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INTRODUCTION*

BROCKWAY McNIILLAN

With this issue of its Journal, the Society for Industrial and Applied
Mathematics initiates a new series devoted to articles on the mathematical
and scientific problems of control. By thus centralizing what it publishes
in the field of control, the Society hopes to stimulate mathematical interest
and research in the theory, and to facilitate the dissemination of applicable
results to those who have use for them.
Many of us in the Society have felt that control theory both needs, and

merits, more explicit attention by mathematicians and by engineers of
mathematical bent. It needs attention because of the pervasive importance
of control systems to modern technological society. Many evident applica-
tions presently suffer for lack of adequate theory; I suspect that an ade-
quately fundamental theory would expose many more applications not
now evident. The field merits attention because it shows promise of a rich
mathematical harvest. It iS a field well illuminated by heuristic guides.
Observable physical phenomena, and special problems already solved in
the folklore or the literature, abound to support the intuition. To those
who do not fear mathematical phenomena that have physical or engineering
counterparts, it can be a challenging and, I believe, rewarding domain to
explore.

Control systems involving plants as diverse in form as amplifiers, air-
craft, chemical processes, and commercial enterprises are now subject to
engineering design and manipulative control guided to some degree by
mathematical theory. Beyond this already great diversity, there are other
control systems of importance to society that require understanding. To
mention some extreme examples, society itself, or its economic under
structure, is a vast control system. I have little doubt that a mathematical
theory of control will some day contribute to our understanding of this
system, and perhaps even to a degree of manipulative control over it. The
behavior that is characteristic of biological organisms, specifically of man,
is that of a control system; from the point of view of the meteorologist, the
earth’s atmosphere is also a control system. Whether a general theory of
control, as control, will ever contribute usefully to understanding or
manipulation of these latter phenomena is much more speculative but
not evidently impossible.

If one were to poll those who design or manipulate control systems about
the need for further theory, the positive replies would undoubtedly em-
phasize a need for better design methods. Herein lies a trap for both en-
gineer and mathematician. Theory creates understanding. Better designs
may result from a theory because the theory is penetrating, is revealing
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2 BROCKWAY MCMILLAN

or definitive about the possibilities available, or indicates what is needed
to realize the full potential of the plant to be controlled. But to set as a
primary obiective of mathematical effort the development of explicit
design procedures may so limit the problem that nothing results. Further-
more, it is delusive to expect that theory, even if successful, will auto-
matically lead to design procedures that are simple. Theory may show the
way to solve a hard problem, but it cannot be expected to eliminate the
need for the data or the computations that are intrinsic to the problem.
To put the thoughts of the lst pragraph into direct form, one cn say,

first, to the engineer: don’t expect too much. It is characteristic of, and a
virtue of, fundamental theories that they are general. Don’t expect a
fundamental result to solve a detailed problem. Be satisfied if it tells you
the data you need, the calculations to make, and some general facts about
the result you will get. And, incidentally, don’t be surprised if some of the
data you need are data you can’t get. This may mean that the theory has
not been general enough.

Similarly, to the mathematician, one can say" don’t expect too much.
It is you who must find the right problems. Don’t expect engineers to give
you good problems ready made. They will give you problemsspecific,
complex, computational, unrewarding. It is you who must develop the
intuition to see the phenomenon behind its manifestation. It is you who
must develop the practical sense to make the right idealizations and to
establish the right criteria of performance.

I have emphasized mathematical opportunities and the needs of tech-
nology for better theory and better understanding. Let me close by em-
phasizing what I think is an important specific need of the mathematician
indeed even of the mathematician already working in the field. This is the
need for a comprehensive synthesis from a mathematical point of view
of the present state of knowledge. We need, and the subject is ripe for, an
inclusive account of the several important streams of mathematical thought
now flowing, an account which relates these to each other and to the prob-
lems of technology that gave them rise. From this, alone, I suspect, one
would perceive mathematical gaps which would be usefully and rather
easily closed. Perhaps opportunities for useful generalization would also
become evident. Such an account would also provide a framework within
which to formulate further problems of technology, many of which, I am
sure, have not been sensed by mathematicians in enough generality to be
interesting.

Perhaps the greatest direct contribution the Society could make to the
further development of the theory of control would be to stimulate and
publish a sympathetic, consistent, and unified synthesis of the field from a
mathematician’s point of view. One can hope that by centralizing and
encouraging publication on control, the Society may succeed in doing this.
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STABILITY AND CONTROL*

J. P. LASALLE
1. Introduction. It is reasonable to assume today, as perhaps was not

so in this country a few years ago, some knowledge of Liapunov’s concepts
of stability and of his direct or second method for the study of the stability
of dynamical systems. Even so, I would like to review first his definitions
of stability and his principal theorems. It turns out, if we discuss first the
general stability problem as it arises in the theory of automatic or feedback
control systems, that we are led rather naturally to Liapunov’s stabilit,y
method. Following this natural course, we will find ourselves reversing
the usual order of presentation. We discuss first the theorems and after-
wards the nature of the stabilities assured by the theorems. Next, we shall
look at some simple illustrations of the application of the Liapunov method
and then consider some linear and nonlinear control problems.

It is, of course, impossible for us today to consider any of these topics
in great detail, and for this reason I have included a list of references.
Although this list contains a few references which are there only for his-
toricM reasons, it is designed primarily to tell you where you might begin
to obtain more detailed information about the topics I intend to discuss.

9.. Stability of control systems and Liapunov’s direct method ([1]-[5]
and [7]). To make things simpler for ourselves, let us assume at the outset
that all of our functions have continuous first partial derivatives. In many
places this is far more than is required but is satisfactory for our purposes.
The behavior of the control system is, we assume, described by a system

of differential equations of the form

where 2i dxi/dt. Making use of vector notation, we can write this system
in the more manageable form

(1) f(x, u)

where

X-- U’- and
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We look upon x as the "error" in control and u as the control function
we wish to select. The uncontrolled system is

(2) f(x, 0),

and zero error is an equilibrium state: f(0, 0) 0. The control system is
to be automatic--another way of saying this is that we want feedback
control--and u is to be a function of the state of the system x. Thus, we
will have

(3) -f(x,u(x)) F(x), F(0) 0.

The class of allowable control functions u will be limited. They may be
restricted in range and may be limited to being special types of functions.
In fact, it can be that we are able to choose only a finite number of parame-
ters that enter into the description of the control u.
An early example of this was the problem considered by Minorsky [17]

in 1923. He was concerned with the design of an automatic steering device
for a large ship (the New Mexico). The differential equations for the
turning moment of the ship were approximated by

a -4- b cO O, a > O, b > O, c > O.

The uncontrolled motion was unstable and the controlled system was

aO + bO cO u(O, O, 0)

where

u(o, O, O) -(0 + 30 + 70).

The problem was a completely linear one and the equations of the con-
trolled motion could be written

(a + a)O + (b -4- fl)O + (7 c)O O.

The coefficients a, , 7 of control were selected to stabilize the ship (, > c),
to decrease the moment of inertia (a + a > 0 with a as negative as pos-
sible), and to increase the resistance to turning ( > 0). The question
of stability offers no difficulty here and the other parameters could be
selected intuitively or by experimentation. Such simple linear problems
offer no difficulties.

Let us return to the general problem of the control system (3). Although
this is not the only way of proceeding, we assume that what we want to
do first is to assure that the control tends to keep the error small and
also tends to reduce the error monotonically. With this point of view we
have a natural way of presenting Liapunov’s direct method. Let V (x)
be a measure of the error x. V (x) is real-valued and to be a reasonable
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measure, at least locally, it must be positive definite. This means that in
some neighborhood N of the origin (perhaps a sphere of radius r around
the origin)

v(z) >o,
() v (o) o.
Define now for the system (3)

x0,

2 (x) (grad V).F (x).

This function can be computed directly from the differential equation
without a knowledge of the solutions nd is why Liapunov’s method is
sid to be direct.

If x (t) is solution of (3), then

d
(5) d-t [V(x(t))l ?(x(t)),

the rate of change of V along solutions. If the system is to tend to keep
the error small, we want

(6) ? (x) =< 0, x in N.

If we want the system to reduce the error monotonically, we want

(7) ]? (x) < 0, x in N, x 0.

LIAPINO’S STABILITY THEOREM. If V satisfies (4) and (6), then the
origin is a stable equilibrium state of (3).
LIAPUNO’S ASYMPTOTIC STABILITY THEOREM. If V satisfies (4) and (7),

then the origin is asymptotically stable.
THEOREM ON ASYMPTOTIC STABILITY IN THE LARGE. If V satisfies

(4) and (7) for all z 0 and if, in addition, V (x) ----> oo as,
then the origin is asymptotically stable in the large. (I] x denotes the Euclidean
length of the vector x).
THEOREM ON THE SIZE OF THE REGION OF ASYMPTOTIC STABILITY. If

the region R defined by V (x) <- c is bounded and if (4) and (7) hold for all
x in R, x O, then R is contained in the region of asymptotic stability.
We shall explain in a moment the precise meanings of these stabilities.

What we have seen is that a system which "tends to keep the error small"
corresponds to stability and that one which does this and at the same
time "tends to reduce the error monotonically" corresponds to asymptotic
stability. What does this mean precisely? Let x (t, x) be the solution of
(3) which starts initially at x(x (0, x) x). Then the origin is said to
be stable if given e > 0there is a 6 > 0such that [Ix[] < 6 implies
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x (t, x) < e for all > 0. If, in addition, there is an > 0 with the
property that x < implies x (t, x) -- 0 as -- , then the origin is
said to be asymptotically stable. The set of all x for which x (t, x) -- 0
as -- is called the region of asymptotic stability. If the region of asymp-
totic stability is the whole space, then we say that the origin is asymp-
totically stable in the large.

Mathematically, the above theorems are simple elementary results
but they provide us with the only general method we have for studying
stability that takes into account the nonlinearities of the system. Described
in a general way one approach to the problem of control is that of finding
a suitable Liapunov function V (x). Then ]? depends on both x and u.
Within the allowable set of control functions we can pick out a subset of
controls which give an asymptotically stable system. Then within this
subset of stable controls we can on the basis of other criteria or exper-
imentation select the one that is best. Let me add that it is not necessary
to proceed in this fashion. We may begin by optimization if we are certain
that the optimization implies stability. This can often be established by
Liapunov’s method [12].

3. The practical significance of Liapunov stability ([3], [5]-[11]). The
concepts of stability and asymptotic stability defined above are due to
Liapunov and could be called stabilities under sudden perturbations. The
perturbation suddenly moves the system from its equilibrium state but
then immediately disappears. Simple stability says that the effect of this
will not be great if the sudden perturbation is not too great. Asymptotic
stability states, in addition, that if the sudden perturbation is not too
great, the effect of the perturbation will tend to disappear. If the system
is asymptotically stable in the large, the effect of the perturbation tends
to disappear regardless of the size of the sudden perturbation.

In practice, however, the perturbations are not simply impulses and
this led Duboshin, a Russian, to consider what he called stability under
persistent perturbations. Today this is called simply total stability.

Let the unperturbed system be

(3) 2 F (x)

and the perturbed system be

(3*) "2 F (x) -t- p(x, t).

The system (3) is said to be totally stable if given e > 0 there is an v > 0
anda > 0suchthatif[Ix]] < rand [[p(x,t) < forallxandt => 0,
then

IIx*(t,x)11 < e for all > 0;
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x* (t, x) is the solution of (3*) satisfying x* (0, x) x. This says that
if the perturbation is not too large and if the system is not too far from
the origin initially it will remain near the origin. One sees easily enough
that system may be stable without being totally stable. Consider an
undamped simple harmonic oscillator with one degree of freedom. How-
ever, as was shown by Malkin and independently by Gorshin, asymptotic
stability of (3) implies total stability. This result is a simple consequence
of the converse of Liapunov’s theorem on asymptotic stability.

Recently Seibert and Auslander have shed new light upon the nature
of these stabilities. They have shown that starting with Liapunov’s sta-
bility there are a whole hierarchy of stabilities (one for each ordinal num-
ber) none of which imply stability under persistent perturbations. In
addition, they show that if (3) is asymptotically stable, then it possesses
a stability under perturbations which is stronger than total stability.
They say that a system is strongly stable under perturbations if it is totally
stable, and in addition, has the property that there is a p > 0 such that
given e > 0, there is a t(e) and a r(e) such that

imply

x* (t, x) < e for all t>= r.

It turns out, as they show, that this strong stability under perturbations
is equivalent to asymptotic stability. This gives us even greater confidence
that asymptotic stability means practical stability.
There is another recent result which establishes an important relation

between control and asymptotic stability. Consider now the control system

d(, v(t)),

where we consider the control to be function of t. Assume that the un-
controlled system

d f(x, O)

is asymptotically stable in the large and that the allowable control and
the control system is in some sense--technically too extensive to explain
here--"proper". Then Markus and Lee [22] have shown that for each
initial state x there is a control function v (t) that moves the system to
the origin in finite time. If one could go a step further and show that there
was a feedback control function u(x) that moves the system from ech
initial state to the origin in finite time, then this would be much stronger
than asymptotic stability nd we could expect the system to have an
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extremely strong stability under perturbations. Later we return to this
question and consider an example to illustrate this point.

4. Asymptotic stability of linear systems ([5] and [12]). Consider the
linear system

’----1
or in matrix notation

(8) , Ax.

We know that the question of asymptotic stability is simply the algebraic
one of determining whether the characteristic values of A have negative
real parts and that there are many criteria for deciding this question.
Let us look at one that arises from the Liapunov method. Let Q be a
positive definite (symmetric) matrix. Then the quadratic form

V (x) qxx x Qx
i,j=l

is positive and

?(x) x’(A’Q + QA)x.

(A’ is the transpose of A.) Therefore, if

(9) A’Q -t- QA -C, C positive definite,

then the system (8) is asymptotically stable in the large by the third
stability theorem given in 2. Conversely, if (8) is asymptotically stable,
then corresponding to each positive definite matrix C there is a unique
positive definite matrix Q satisfying (9). In fact,

Q f e’tCe-t dt.

Thus, we see for a linear system with constant coefficients that the problem
of stability is reduced to that of determining whether the linear system
of equations (9) has a positive definite solution Q.

5. General criterion for asymptotic stability in the large ([23]-[26]).
In this second illustration we use an idea due to Hartman to obtain in a
simple way what had previously appeared to be a fairly complicated result.
We are still considering the system

(3) F (x), F (O) O.

Take as the Liapunov function any positive definite quadratic form

V x’Qx.
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Then

Note that

F’ (x)Qx - x’QF(x).

F(x) Jo J(sx)x ds

where J (x) is the Jacobian matrix of F (x). This identity follows easily
from computing d(F (sx))/ds. Using this identity, we have

fo x’[J’(sx)Q - QJ(sx)lx ds.

Therefore, as a consequence of the third theorem stated in 2 on asymp-
totic stability in the large, we see that if for some positive definite matrix
Q, J’ (x)Q QJ (x) is negative definite for all x O, then the system (3)
is asymptotically stable in the large.

6. Improvement of stability and control of linear systems ([12], [17],
[19], [20]). What we wish to do here is illustrate by a rather simple example
the way in which Liapunov ideas can be used to select controls that im-
prove stability and at the same time improve performance. We assume
that the uncontrolled system

2= Ax

was asymptotically stable to begin with or that it has already been sta-
bilized. We are able to add more control and take the controlled system
to be of the form

"2 Ax -- Bu,

where x is an n-vector, A is a constant n X n matrix, B is a constant
n r matrix, and u is an r-vector. Our obiective is to select a control u
that increases the stability and at the same time improves performance.
We consider the case where the performance criterion is the quadratic
functional

I(x, u) f0 [x’Cx + u’Ru] dt,

where C and R are positive definite matrices. With a specified initial state
x and a given control function u, the solution of the controlled system is
determined uniquely and the above integral is then a line integral along
the solution. We are not sure that this integral exists but will see in a

moment for the controls we select that it does exist, f xCx dt represents
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the "cost" of the error and fo u’Ru dt the "cost" of control. Select

V (x) x’qx
where A Q -t- QA C.
Note first of all that with no control (u O)

(x) -x Cx,

and integrating from 0 to oo we have, since the system is asymp-
totically stable,

v (x) I (o, o).

The value of V at the initial point is equal to the measure of performance
with no control. We want then to select a control u which increases stability
and at the same time improves performance (I (x, u) < I (x, O)). For
the system with control,

2 B’"(x) -x’Cx + u’B’Qx + x QBu x’Cx + u

Let P be any positive definite n X r matrix and take

-Pu 2BQx;
that is,

u -2P-1B’Qx.
This is linear control and we are assured that it improves stability since

(x) -x’Cx u’Pu.
However, do we obtain improvement in performance? Again integrating
fromt Otot o, we have as before

and

f0 + f0
Since V (:c) I (z, 0), we obtain immediately

I(x, O) I(x, u) fo u’(P R)u dt.

We then see tha we will have improved performance (I (x, u) < I (x, O)
by using this control if P > R, hat is, if P R is positive definite. Thus,
if we were o take P XR we would obtain improvement only if X > 1.
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We do not draw the conclusion that making k larger improves performance.
With P kR the solution over which the line integral is being evaluated
depends upon k. We are only sure that an optimal k is greater than one.

This example is meant only to illustrate what can be done with Liapunov
functions, and we leave two questions unanswered. The first is with P

kR" what is an optimal choice of k? The second and more important is"
can one iterate this scheme and converge to optimal linear control (a linear
control that minimizes I (x, u))? One may also have some choice of the
matrix B, and this we have not taken into consideration.

7. Stability of nonlinear control systems ([2]-[5], [12]-[21]). The most
celebrated problem is the one first considered by Lurie and Postnikov,
studied in considerable detail by Letov, and put in order mathematically
by Lefschetz and Yacubovic.
The control system is described by a system of differential equations

of the following form

c Ax - bf (a),
r d’x rf (r

where A and x are as before, b and d are n-vectors, f (a), a and r are scalars
(real numbers). The uncontrolled system 2 Ax is assumed to be linear
and asymptotically stable and f is any continuous function satisfying

f() >0, 0.

The a is the feedback control signal and f is the characteristic, say, of a
servomechanism. We then want to determine conditions on the parameters
b, c, and r which assure that the system is asymptotically stable in the
large for all f(a) of the above type. If b, c, and r have this property, the
system is said to be absolutely stable. Thus, absolutely stable systems are
stable for a whole class of functions f and possess a strong stability relative
to perturbations of f.
The general idea behind the solution of this problem is the following"

Take

V(x, ) foxQx+ f(a) da

where Q is selected as before so that AIQ - QA -C, C > O, Q O.
It then turns out that

? -x’Cx + 2f(a)(Qb + 1/2 d)x

is a quadratic form in x and J (a). It is then relatively simple to write
down conditions on the parameters that assure that is negative definite.
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For instance, one may pick Qb 1/2 d 0 and r > 0. Since C is an arbitrary
positive definite matrix, there are many ways of doing this and there has
been much discussion of simple kinds of sufficient conditions.
Let us look at a quite different type of nonlinear control. The example

is somewhat artificial but I believe illustrates a point. Consider the linear
system

c Ax --[-- Bu

where B is a nonsingular n X n matrix and the control u is subject to the
constraint u <= 1. Select

V xQx,

where Q as before satisfies

A’Q -4- QA -C, C>O.

Then
-x’Cx "4" u B Qx x QBu.

Now the choice of u that minimizes I;" is clearly

u -B’Qx/i] B Qx

and

? --x’Cx 2 B’Qx ]1.
Thus for x 0,

-< 211 B Qx <= -2aV2, a > O.

Taking W V2, we obtain

W_-< -a < O, forx 0.

Therefore, this control reduces W to zero in finite time which means that
from each initial state the system is brought to the origin in finite time.
This, of course, cannot be done by linear control and the system has, as
we shall show, an extremely strong stability under perturbations.
With the above control, consider the perturbed system

(*) Ax -t- p (x, t)

For this perturbed system

W, W -4- grad W.p.

Since for x 0, ]] grad W ]] =< k, we have for all x 0 that
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Hence, if P <= < a/k, the system retains the property that from each
initial state the control brings the system to the origin in finite time.

This establishes, at least for this particular case, what we believe in-
tuitively and know from experience" Feedback control should result in a
system that has an exceptionally strong stability under perturbations. A general
result of this nature is certainly of mathematical and theoretical interest
and should be of considerable practical significance.

8. Stability of functional differential equations ([29], [30]). In the last
five years or so there has been an active research effort, particularly in
the Soviet Union on what can be called functional differential equations.
Such equations include, for example, quite general types of differential
equations with delays where the delay may depend on the time and also
the state of the system. As another example one might well wish to select
a control that depends not only upon the present state of the system but
which depends, perhaps, on the integral of the state over an interval of
the past. Thus, in the system (1) we might have

)x(t), _ x(,) d

2(t) f x(t), u x(t),

The system (3) then becomes

F(x)

where now F is a functional and this is then a functional differential equa-
tion. Much of the Liapunov theory has been extended to systems of this
type [29] and Hale in [30] has shown that the converse theorems are a
powerful mathematical tool for deriving general results concerning these
equations. This would appear to be an area of mathematical research of
considerable interest and importance.
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MINIMUM EFFORT CONTROL SYSTEMS*

LUCIEN W. NEUSTADTT
Abstract. An optimal control problem is considered in which it is desired to transfer

a linear control system from one given state to another state. The target state may
either be a point or a convex closed set. Optimization is understood in the sense of
minimizing the control effort, where effort is defined either as maximum anplitude
or as an integral of a certain function of the control. The optimization problem is
reduced to the problem of finding the unique minimum of a function of n variables
(where n is the order of the system). It is shown that the method of steepest descent
is particularly applicable to finding this minimum, and consequently to determining
the minimum effort and optimal control.

I. INTRODUCTION

We shall consider control systems whose state at any time is described
by an n-dimensional vector x(t) which satisfies the ordinary differential
equation

(1) (t) A (t)x(t) + B(t)u(t).

The solution of (1) depends on the choice of the function u(t) which we
shall refer to as the control function. This control function is also assumed
to be a vector whose components we shall denote by ul(t),..., u (t).
Throughout this paper we shall assume that the u(t) are bounded meas-
urable functions, and that A (t) and B (t), which are n n and n X r

matrices, respectively, are continuous in t. We shall denote the columns
of B(t) by bj(t), j 1, r.

If u* (t) is an arbitrary (bounded and measurable) r-dimensional vector
function defined for to _-< <= tl, the solution of (1) with u(t) u* (t)
exists on the interval [to, t] for an arbitrary initial condition x (to) x0.

(For ease of notation, let us henceforth suppose that to 0.) If x (t) is
this solution, andx(T) where0 to =< T =< t, we shall say that
u (t) transfers x from Xo to in time T.

Consider the following problem. Suppose that a "response time" T, T > 0,
is given, and that a real valued function is defined, where the domain of

is the set of all bounded, measurable, r-dimensional vector functions
on [0, T]. We shall say that (u (t)) is the effort associated with u (t). Then
our problem consists of the following" Given an initial state x0 and a desired
final state x (which may depend on T), find a control function u* (t)
which transfers x from x0 to x in time T, and in so doing minimizes the
control effort ; i.e., if (t) is any other control which transfers x from x0

tO Xl in time T, 3 ( (t)) >= 3 (u* (t)). Then, u* (t) will be called the min-
imum effort control, and (u* (t)) the minimum effort.
This problem may have no solution, either because there is no control

* Received by the editors April 6, 1962.

f Aerospace Corporation, E1 Segundo, California.
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which transfers x from x0 to xl in time T, or because the minimum of the
values 3 (u(t)) is not achieved (on the required set of u(t)). However,
for the particular cases which we shall consider, neither of these difficulties
arises.

Suppose that a solution to the problem exists for all response times T
in some interval. In this case, let f(T) be the function which expresses
the minimum effort as a function of T in this interval. In most physical
problems, short response times correspond to large efforts, so that a con-
trol system designer must "trade-off" the desirable features of rapid action
and small effort. Knowledge of f (T) will enable him to make an intelligent
choice in designing a maximum effort capability into his system. Since
x0 and xl may not be known a priori, and the function f clearly depends on
them, it is probably necessary to compute f for a representative set of
initial and terminal states. The actual optimal control may be difficult,

to implement in practice, but even for a non-optimal control law, f(T)
provides a definite lower bound on the control effort required to perform
a specific task.

In this paper we shall consider that 8 (u(t)) is defined in one of two
ways: either as the maximum control amplitude (see (4)), or as the in-
tegral of a certain function of the control (see (18)). We shall show that
the minimum effort and minimum effort control can be obtained in both
cases by solving a simple variational problem, in which it is required to
find the minimum of a functional F of n variables. We shall show that F
has continuous first partial derivatives which are easily evaluated. Fur-
thermore, we shall show that F has no extrema other than the desired one,
so that the method of steepest descent can be used to compute the minimum.
Finally we shall generalize the problem to the case where the target point
xl is replaced by an arbitrary convex set.
The variational formulation which we shall present and derive was

first given by Krasovskii [1, 2]. However, Krasovskii did not exploit his
result to derive a computational method. Furthermore, our derivation
differs from Krasovskii’s. We shall use some geometric arguments similar
to the ones introduced by Bellman, Glicksberg, and Gross [3], and later
used by LaSalle [4], Gamkrelidze [5], and others. Krasovskii took the
viewpoint that 8 is a functional on an L space, and used some results of
Krein on the so-called L-problem to derive the variational form.
We also note two other approaches to the problem in case 8 is given by

P T

integral of the form L]. G (u(t)) dr, where G is a sufficiently smooth

scalar-valued function. One is from the viewpoint of the classical calculus
of variations, using undetermined Lagrange multipliers. This approach
has been described by Desoer [7] in a slightly different context. The other
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approach, using the Pontryagin maximum principle, has been described
in [6]. In both these methods one is eventually faced with the problem of
determining n constants--the Lagrange multipliers in the first case, and
the initial conditions of an adjoint solution in the second. These constants
are analogous to the coordinates of the vector introduced below.

Krasovskii [1, 2] was interested in the time-optimal problem, in which
a maximum value for 3 (u(t)) is given, and it is desired to find a control
u (t) which transfers x from x0 to xl (both points are given) in minimal
time, subject to the maximum effort constraint. If the function f(T) and
the corresponding minimum effort controls u* (t) have been computed, the
time-optimal problem is solved by noting the smallest value of T for which
f(T) is not greater than the prescribed maximum effort. A different, more
efficient method of computing time-optimal controls has been described
by the author [8]. In this method it is only necessary to carry out one
maximization similar to the one described below, as a result of which
both the minimum time and the time-optimal control are derived. Another
method of computing time-optimal controls has been described by Ho [9].
This method is one of successive approximations and requires optimizations
at various values (guesses) of the minimal time.
We note that the general solution to (1) with initial condition x(0)
x0 is given by

(2) x(t) X(t) Xo -- X-(s)B(s)u(s) ds

where X (t) is the matrix solution to the equation

(t) A (t)X (t),
(3)

X (0) I (the identity matrix),

and X- (t) Y (t) satisfies the equation

* A*Y*, Y (0) I,

where * denotes transpose.

II. EFFORT DEFINED BY MAXIMUM AMPLITUDE

Let us first consider the case where

(4) , (u (t) max_<__<_r sup0<=t_<_r u(t) [.
Physically, this might correspond to the maximum thrust available in gas
jets of a satellite attitude control system.

Suppose we are trying to "hit" moving target x (t), where the vector
function x (t) is continuous. Then, for a fixed time T > 0, we wish to
find a control u* (t) which transfers x from x0 to xl (T) in time T, and has
the property that if /(t) is any other control which performs the same
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transfer, then

maxj sup0_, _r u*i (t) -< max sup0<_, <=r i (t) l.
Let us define the functions y (t) and g(t, v) by

(5) y (t) X-1 (t)xl (t) x0,

(6) g (t, v) "X- (t) B (t)

where is the n-dimensional (row) vector (vl, v), y(t) is an n-
vector, und g(t, ) is an r-dimensional row vector whose coordinates we
shall denote by gi(t, ), j 1,..., r, so that g1 .X-Ib. Let us use
the notation [sgn g(t, v)] to indicate the r-dimensional column vector
function whose j-th component is sgn g(t, ). Finally, let

T

i----1

We shall say that the control system is normal (following LaSalle [4])
if, for every fixed vector 7 0 and every j 1, r, the set of > 0
for which g(t, 7) vanishes has measure zero. Then F (7, T) > 0 for every
70, T>0.
TEOnEM 1. Given the normal control system defined by (1), the initial

point Xo, the target point xl (t), the time T > O, and the "effort" function
defined by (4), then there exists a minimum effort control u* (t) which transfers
x from xo to xl (t) in time T. If y (t) defined by (5) does not vanish for T,
the minimum effort 8mi, 8 (u* (t)) is given by

1
min F(7, T)(8)

Smin .tiP

where F is given by (7) and P is the plane 7"y(T) 1. Furthermore, the
minimum effort control is unique (to within a set of of measure zero), and
is given by

(9) u* (t) min sgn g(t,

where 7 is any vector in P for which the minimum in (8)/s attained. Finally,
if y(T) O, the control u* (t) 0 is the desired minimum effort control.

Proof. If y(T) 0, (2) and (5) show that u(t) =- 0 transfers x from
x0 to x (T) in time T. Suppose now that y(T) O. Define the set Cr by

(0)
uJ(t) measureable, ui(t)]<= 1, j 1,..., r, 0 <= <= T.

This function is not well defined when g" (t, n) 0, but by the assumption which
follows, the set of for which this is true has measure zero.
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It is easy to show that Cr is a convex, bounded set in n-space which is
symmetric with respect to the origin. Also, C is closed (for example, see
[4, Lemma 2]). Furthermore, C does not lie in any linear subspace of
dimension less than n, so that it is a convex body. To show this, assume
the contrary. Then there is a vector 0 orthogonal to this subspace. There-
fore, 0 is orthogonal to Cr so that 0. 0 for all Cr. But if

T

* fo x-l(t)B(t) sgn g(t, 0) dr,

’* C and 0.’* F (0, T). But F (0, T) > 0 by our normality assump-
tion, and we have a contradiction. Thus, if p is any nonzero vector, there
are vectors ’1, ’ of C and real numbers (not all zero) ),1, k
such that i%1 },i’i p. Because of the symmetry of C, we may assume
thathi >= 0, i 1,...,m. Since Cisconvex, lp Cwhere /isthe

positive number i_=1 },i. We shall use this fact below.
Let us denote the control function sgn g(t, 7) by u(t, 7), and define

the point z(T, r) of Cr for every v 0 by
T

(1.1) z(T, r) fo X-(t)B(t)u(t’ r) dr.

Note that .z(T, 7) F (% T). Furthermore, it is easy to show that

(12) v.z(T, r) > .’, for all C., z(T, ).

Also, u(t, ) gives the only (disregarding sets of measure zero) repre-
sentation of z(T, r) in the form (10). Thus, z(T, ) is a boundary point
of C,, and n is the outward normal of a support plane to the set at this
point (or, as we shall say, r is a normal to Cr at z (T, r)).
Now define

O max .
y(T) eC T

Since y(T) 0 and Cr is compact and contains the origin, a is defined,
and by what was said earlier, a > 0. It is clear that ay (T) is a boundary
point of Cr. Let be the normal to Cr at ay(T), so that n*.ay(T) >= *.
for all Cr. Then it is easy to see that ay(T) z(T, *), so that
F (7*, T) n*.z (T, 7*) > /*’f for all f ff Cr distinct from ay (T). Since
F (/*, T) > 0 and the length of /* plays no role in our discussion, we may
assume, without loss of generality, that v*.y(T) 1. It readily follows
from (2), (5), and (11) that the control u*(t) a-u(t, 7*) transfers
xfromx0toxl(T) in time T. Also, g(u*(t)) a so thatgi -< a

Now suppose that % (t) is a control which transfers x from x0 to xl (T)
in time T. We shall show that g (4 (t)) >= a 1, so that min O It follows
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from (2) and (5) that
T

y(T) fo X-(t)B(t)(t) dt,

nd if we set (t) [((t))]-(t)(so that (%(t)) 1), the vector

(13)
3((t))

y(T) X-(t)B(t)a(t) dt

belongs to Cr. Then, by definition of a, ( (t)) >= a

Thus, u* (t) is indeed a minimum effort control. To show it is unique,
suppose that (t) is defined as above, and that 3 ( (t)) a Then the
vector (13) is ay (T) z (T, v*), and because of the unique representation
of this vector in the form (10), (t) u (t, *) lmost everywhere. Hence,
u (t) (t) .e.

Let us erify (8) and show that v is a minimizing vector. By what hs
already been proved, if is any vector in P (i.e., v.y(T) 1)

(14) F(v, T) v.z(T, n) >= n.ay(T) a.

Furthermore, ay(T) z(T, v*), and * P, so that

(15) a .z(T, v*) F(v*, T).

Combining (14) and (15), we obtain the desired result

(16) 1
a minF(v,T) =F(v*,T).

min

To complete the proof of the theorem we need only show that if 7**
is any other vector in P at which (8) takes on its minimum, then u(t, q*)

u(t, 7**). But suppose that F(v**, T) F(v*, T) a, and that
** ** 7** **v "Y(T) 1. Then F(v**, T) n .z(T, a .ay(T).

Because of (12) it follows that z(T, **) ay(T) z(T, 7*). Since the
representation of z(T, 7*) in the form (10) is unique, u(t, 7*) u(t, 7**)

Note that the vector 7" P which realizes the minimum in (8) need
not be unique. This corresponds to the geometric fact that there may
be more than one support plane to Cr at ay(T). To each support plane
at ay(T) there corresponds an 7. For each of these v* the minimum
effort control u* (t) is the same. Let us denote the set of these minimizing
vectors, which is a closed convex subset of P, by H.
We claim that the function F (7, T) hus no extrema on P away from

the set H. It is shown in [8] that F(v, T), as a function of , v,
is in C1, and that its gradient is given by

VF(7) z(T, 7) 0.
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Thus, F has an extremum on P if and only if VF (7) z (T, 7) Ky (T)
for some constant K, since y (T) is the normal to P. But z (T, ) is a bound-
ary point of Cr for every 7, and the only multiples of y(T) which are
boundary points of Cr are -+-ay(T). However, if z(T, ) --ay(T),
cannot belong to P because 0 < .z(T, ) --a.y(T), or .y(T)

-a-l.z(T, ) < 0, and .y(T) 1. Therefore, if F has an extremum
inPat , z(T, ) ay(T), which implies that F(7, T) v.z(T, 7)

.ay(T) a; i.e., H.
Thus, consider finding the minimum of F on P by the method of steepest

descent. To do so, we let be a function of a parameter r and solve the
differential equation

(17)

&q
--VF -t-" [VF.y( T)]y(T)

dr y(T)

z(T, 7) -t-" [z(T, n)].[y(T)] y(T),
y(T)

where the right-hand side is the component of VF in P. The terms in the
right-hand side of (17) can be computed directly in terms of known quan-
tities (see (11), (6), (5), and (3)). The term 7"X-1 (t) which occurs in
(6) may be computed as follows. Let y (t, 7) X*-1 (t)r y.r (where
T denotes the transpose of 7); then,

dy(t, 7) --A*(t)y(t, 7)
dt

y(O, 7) Vr.

Equation (17) can be solved on an analog computer, provided that a
sampling procedure is used in the computation of z(T, v). (The latter
cannot be computed instantaneously since an integration is required.)

Since F C1, if the steepest descent method converges at all, it must
converge to an extremum of F, which must be a point on the desired set H.
Theorem 1 essentially was first proved by Krasovskii [1]. The fact that

a control function which transfers x from x0 to xi in time T, for arbitrary
x0, xl, and T > 0, does exist (which is an immediate consequence of
Theorem 1) has already been shown by LaSalle [4, Theorem 6]. As LaSalle
pointed out, one can even relax the assumption of normulity in this exist-
ence proof.

Kulikowski [10] considered the same problem of minimizing the function
F. To do so he assumed that the components of X-1 (t)b(t) could be ap-
proximated by n-th order polynomials in t, in which case he could compute
the minimizing polynomial explicitly. However, this polynomial approx-
imation may in general be inadequate.
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III. EFFORT DEFINED BY INTEGRALS

Now consider the case where effort is given by

(18) f0r Xi [ui(t)l" dr,

where each X. is positive, and p > 1. By redefining the u’(t) and the bj(t),
we can assume that X. 1 for j 1, r. It is also convenient to con-
sider the (1/p)-th power in (18). This new definition obviously does not
change the minimum effort control. Thus, in this section we shall consider
that effort is defined by

where p is a fixed number greater than one.
Physically, the most interesting case is when p 2, in which case effort

may correspond to energy, power, etc. Furthermore, if p 2, the term
h.[uJ(t)] in (18) can be replaced by an arbitrary positive definite

quadratic form, since a linear transformation on the us, which does not
change the form of (1), will put the effort in the form of (19).

Let us define the functions y (t), g(t, ), gJ(t, ), and sgn g (t, ) as in
section II, but let us redefine the function F by

((20) F(V, T) =-- [g(t, ,)[ dr/,
where q is related to p by the relation p-* + ( 1. If the control system
is normal, F(v, T) > 0 for all v 0, T > 0.
We then have the following theorem.
EOaE 2. Given the normal control system defined by (1), the initial

point x0, the target point x (t) the time T > O, and the effort function defined
by (19), then there exists a minimum effort control u* (t) which transfers x
from Xo to x (T) in time T. U Y (t) defined by (5) does not vanish for T,
the minimum effort gn (U* (t) is given by

(21) 1
min F(, T)

min {P

where F is given by (20), and P is the plane y.y(T) 1. Furthermore, the
minimum effort control is unique to within a set of of measure zero and is
given by

(22) u

where
8=i [F (*, T)]-q,
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and is any vector in P at which the minimum in (21) is attained. Finally,
if y(T) O, the control u* (t) 0 is the desired minimum effort control.

Proof. If y(T) 0, it is clear that u* (t) 0 is the desired control.
Thus, we shall assume that y (T) 0. Define the set Cr, which corresponds
to the set Cr of Theorem 1, by

(23) Cr X-(t)B(t)u(t) dt; u(t) mesurable, 3(u(t))

Using the HSlder inequality and the boundedness of X- (t) and B (t),
we easily conclude that Cr is bounded. The set is convex because the func-
tion (u) (u, ur) = u is convex. It is also obvious
that Cr is symmetric with respect to the origin. As in Theorem 1 (making
obvious minor modifications) we can show that if p is any nonzero vector,
there is positive number such that kp Cr.

Let us show thut Cr is closed. Suppose that {x.} is a sequence of points
in Cr, with x x as n , and suppose that x is represented in the
form (23) by the function u (t). We shall show that there is a measurable
function u (t) such that 5 (u (t)) 1, nd

T

(24) x f X-’(t)B(t)u(t) dt,
o

which will. prove that x Cr and that Cr is closed. Let us consider the
scalar functions u.j(t) (j 1, r; n 1, 2, ...) as elements of Lp (0, T).
Clearly,

fo u(t) I gt <_ [(u(t))] -<

for all n and j, so that the functions u (t) are uniformly bounded in the
L norm. Hence, for each j, we can find functions u (t) in Lp such that a

subsequence of {u(t) } converges weakly to u (t) [11, p. 130]. Without
loss of generality we shall, assume that u(t) -- u (t) as n weakly
for each j. If we let u (t) be the function with components u(t), (24)
follows from the definit!.on of weak convergence. Thus we need only prove
that (u (t)) _-< 1. Let q be defined by p- - q- 1, and let

A., u](t) ]u](t)
j=-=l

sgn u dt.

By definition of weak convergence, s n -- ,T

where we have used the fact tha pq- -I- 1 p. But it follows from the
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HSlder inequalities for sums and integrals and the fact that 8 (u (t)) _-< 1
for all n, that

uildt u dt N [u dt

Therefore,

[8 (u (t))]v lim A. -< [8 (u= (t)

or, since p pq-1 1, 8 (u (t)) -<_ 1. Thus Cr is closed.
Now redefine the function u(t, 7) for every v 0 by (see (20) and

(6)),

(25) u (t, /) IF (/, T)]-v gJ (t, 7)lv sgn gJ (t, /),

and define z(T, 7) as in (11), where u(t, 1) is given by (25). It is easily
seen that 8 (u (t, 7) 1, so that z (T, 7) Cr. Furthermore, as in Theorem
1, we have the identity .z (T, ) F (7, T). This can be verified immedi-
ately by direct substitution.

Let us prove that (12) is satisfied by every point " in Cr distinct from
z (T, ), and that the representation of z(T, 7) in the form (23) is unique.
Thus, suppose that

r

X-1r (t)B(t)(t) dt,

where

Then,

(26)

fo
r

l(t)] dt <- 1.
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The second inequality in (26) follows from the HSlder inequality for
sums. Equality in the first and second inequalities holds if and only if

H (t) K g" (t, v)I q/p sgn g" (t, v)

a.e., where K is a constant. If (t) has this form, the third inequality,
which follows from the HOlder inequality for integrals, becomes an equality.
Equality holds in the last inequality if and only if 8 ( (t)) 1. In sum-
mary, 7" [7"1 7.z(T, 7) if and only if/(t) u(t, 7) a.e., i.e.,
if and only if " z(T, 7). Hence, 7"" < 7.z(T, 7) if Cr, z(T, 7),
and u (t, 7) gives the only (disregarding sets of measure zero) representa-
tion of z(T, 7) in the form (23).
The remainder of the proof is an almost literal repetition of the cor-

responding part of the proof of Theorem 1 (beginning immediately after
(12)), and we shall omit it.
COnOLLAY. The condition in Theorem 2 that the control system is normal

can be replaced by the following hypothesis: For every vector 7 O, and every
T > O, the set of [0, T] for which g (t, 7) 0 has positive measure.

Proof. The normality was used in both Theorems 1 and 2 to show that
F (7, T) > 0, if 7 and T do not vanish. It is easily seen that the alternative
hypothesis is sufficient to prove this relation. In Theorem 1 normality is
necessary to prove (12) and the unique representation of z (T, 7). However,
the same results can be obtained in Theorem 2 with the weaker hypothesis.
The case where p 1 is of particular interest in applications. However,

this case presents some difficulties which do not arise when p :> 1. In the
first place there is generally no minimum effort control in the strict sense.
To realize such a control one must allow delta functions. Let i (t) denote
the unit delta function at 0.

Define

F(, T) max max Ig’(t, 7)[,
0_<t_<" l=<’_r

and assume that for each j and each 7 0 there are a finite number of
times rJ [0, T] at which gJ(t, 7)1 F (7, T). This number may depend
on v, and may be zero. Of course, the values of r depend on 7.
Then, the minimum effort is again given by (21), and if 7" P is a

minimizing vector, the minimum effort control u* (t) is given by

where the r correspond to sgn ti sgn g’(ri, 7*) or ui 0,
and ,I ui] ;i,. If the set of ri is empty for some j, u*(t) =- O.
A computational difficulty arises because 7" does not completely de-

termine u* (t). Indeed, the vi are determined, but the ui in general are
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not. Furthermore, the minimum effort control may even not be unique.
In addition, the steepest descent method described below cannot be applied
since F (7, T) may not be differentiable.
The derivation of the above relations is very similar to the proof of

Theorem 2, but since the relations do not serve our purpose, these deriva-
tions are omitted. Note that the corresponding set Cr is not closed, which
ccounts for the absence of true minimum effort controls.
Most of the results of Theorem 2, as well s the relations for the case

p 1, were first derived by Krasovskii [2].
Let us note that the method of steepest descent can be applied to the

computation of the minimum described in Theorem 2. It is more con-
venient to deal with the function G(, T) [F(v, T)]q, than with F.
Clearly F and G have the same minima. Now,

07i- j=l
g t, 7) q dt

=
g(t, 7) dt,

g(t, 7) (t)b(t) _, Vy (t),
k=l

where yk is the k-th component of X-lbj, i.e., y (t) ek.X- (t)bj(t),
where ek is the k-th (row) coordinate vector. Then it is easily seen that

so that

]g(t, 7)] qy/(t)]g(t, 7)1- sgn g(t, 7)

TOG
qe fo X-’(t)bj(t) g(t, 7)1’ sgn g(t, 7) dt

07 ’=1

q[F(, T)l/e’. f X-’(t)B(t)u(t, 7) at
’0

(see (25)). Thus,
VG Mz(T, ),

where M q[F (7, T)]q/; i.e., as in section II, the minimum of G, and
therefore of F, on P cn be found by solving the equation (dropping the
positive "gain factor" M)

(27) d7 -z(T, 7) + z(T, 7)’y(T) y(t).
dr y(T)

Furthermore, the remarks that were made in section II with respect to
uniqueness of extrema apply here as well.
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IV. THE PROBLEM WHERE THE TERMINAL STATE IS A SET

Let us now consider the same problem described above, where the
target point xl (t) is replaced by a fixed target set 2. Thus, for each fixed
time T, we wish to find the control u* (t) which transfers x from x0 to
some point of 2 in time T, and has the property that if (t) is any other
control which transfers x from x0 to a point of in time T, ((t))
>_- (u*(t)). The arguments of this section apply to the case where effort
is defined either as in section II, or in section III (with p > i). We shall
assume that the set is closed and convex. A problem in this formulation
arises, for example, in the regulation of plants with numerator dynamics
[12].

If 2 is compact, the minimum effort nd minimum effort control my be
computed in ]most the exact sme wy s in the cse when 2 consists of

single point. It is only necessary to replace the plane P in (8) nd (21)
by the set Q defined as follows.

Let Yr be the set X- (T)2 x0. Then Q is defined s the set of ll
vectors for which

(28) min 7"Y 1.
Y.Y T

Thus, we have the following theorem.
THEOREM 3. Given the normal control system defined by (1), the initial

point Xo the compact convex target set , the time T > O, and the effort func-
tion defined by (4) or (19), then there exists a mininum effort control u*
which transfers x from Xo to in time T. If the origin does not belong to the
set Yr X- (T) Xo, the minimum effort min (U* (t)) i8 given by

1(29) min F(, T),
min

where F is given by (7) or (20), and Q is defined by (28). Furthermore, the
minimum effort control is unique to within a set of of measure zero and is,
given by (9) or (22), where zs any vector in Q for which the minimum in
(29) is attained. Finally, if 0 Yr u* (t) 0 is the desired minimum effort
control.

Proof. If 0 Yr, it immediately follows from (2) and (5), and the
definition of Yr, that u* (t) 0 transfers x from x0 to t in time T. There-
tore, assume that 0 Yr.
Now consider the set Cr defined in Theorem 1 (or 2), and let F
{/" (Yr) ’1 Cr is not empty}. Since t is compact, Yr is also compact, and

since 0 Yr there is a neighborhood V of 0 which does not meet Yr.
Thus, there is a positive e such that y > e for all y Yr. Since Cr
is bounded, there is a number k such that " < k for all Cr. There-
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fore, if r, f < X/e. Let a be the least upper bound of the numbers
B r. Note that a > 0. Let us show that a r. Suppose that -- a,

F, and let y be a point of Yr such that nY Cr. Since Cr is com-
pact, there is a point f* Cr such that a subsequence of {y} converges
to *. We shall suppose that nYn -- *. Then, since Yr is bounded, it is
also true that ay-- f*, or y. (a-if*). But since Yr is closed,
(a-li"*) Yr or * (aYr) f Cr, i.e., a r. Let ’* ay* where y* Yr.
Note that aYr cannot meet the interior of the convex body Cr. For if

ay, wherey Yr is an interior point of Cr (1 q- e) (1 + e)ay
also belongs to Cr for some > 0, i.e.,a Fwhere (1 + e)a > a,
contradicting the definition of a. Thus, in particular, * is a boundary point
of Cr (as well as of aYr).

Since Cr is a convex body which meets the convex set aYr only at
boundary points of Cr, there is a plane which supports both aYr and
Cr at their common boundary point * (see, for example, [13, p. 142,

* v* v* ’*problem 1]). In other words, there is a vector v such that ." <

<= v*.ay for all Cr and all y Yr. Then * z(T, v*) (defined either
as in Theorems 1 or 2), and v*’ < 7"* for all Cr distinct from
i’* (see (12)). As a result, we can conclude that * is the only point common
to aYr and Cr. Furthermore, we may assume, without loss of generality,
that 7" i’* *a, so that a <= aT*.y for all y Yr, or 1 minyy r 7 "Y,
i.e., Q.

a
-1 andWe may now proceed as in Theorem 1, and show that mi,

that the unique minimum effort control is given by a-lu(t, 7*). To prove
relation (29) we note that if 7 is any vector in Q, i.e., 7 satisfies (28),
then

*7.z(T, 7) > 7" _>_ inf .ay a,
YY T

because * (aYr) l Cr (see (12)). Together with the relations 7" Q,
* i’* *a, z(T, 7"), v.z(T, 7) F(7, T), and a- min, this

proves (29), and shows that 7 is a minimizing vector. Finally, suppose
that 7** Q and that F (7"*, T) a, so that **.z(T, 7**) a. Since
** * * y* ,7"*’i’* ** * i’*Q, and ay where Yr a .y >-a. But Cr,

so that it follows from (12) that z(T, 7*) * z(T, 7**). Since the
representation of z(T, v*) in the form (10) (or (23)) is unique, u(t, 7*)
--u(t, 7**) a.e., and the proof of Theorem 3 is complete.
COnOLLAnY. If is defined by (19), the normality assumption can be

replaced by the condition in the corollary of Theorem 2.
If the set 2 is unbounded (although convex and closed), it can be re-

placed by its intersection with some closed sphere of sufficiently lurge
radius. This intersection f’ will be compact and convex, and if the sphere
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is large enough, the problem of attaining ft’ will be equivalent to attaining
ft, and Theorem 3 can be applied. In practice it should not be difficult
to obtain a reasonable estimate for this radius.
The method of steepest descent may also be applied to finding the

minimum in (29). In this case, one is interested in finding the minimum
of F not on the plane P, but on the surface Q. If Q is piecewise smooth,
corresponding to t sufficiently smooth, (27) may be used, except that
y(T), the normal to P, must be replaced by the normal to Q, which in
general will vary with n. The ease with which this normal can be com-
puted as a function of n depends on the nature of ft.
For example, suppose that ft is a convex polyhedron of dimension n

or less. Then Yr is also a convex polyhedron, say with vertices yl, y8

It is easily seen that (28), which defines Q, is equivalent to

(30) min v’yi- 1.

Let Hi be the half-space defined by {7: ’yi _-> 1}, and let Zi be the plane
v" v’yi >_- 1}. If Z [’l =1 Hi, Z is an unbounded convex "polyhedron"
whose faces lie in the Hi. It follows from (30) that Q is the boundary of
Z, i.e., is made up of these plane faces. Then, in the steepest descent pro-
cedure, v will either vary within one face, or proceed from face to face,
possibly moving along the intersection of two or more faces during a part
of its motion. It can be shown, as in section II, that F has no local extrema
on any of the faces of Q or on the intersections of these faces other than
the desired one. Thus, if the steepest descent process converges, it tends
to the desired minimum of F on Q.
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VECTOR LYAPUNOV FUNCTIONS*

RICHARD BELLMAN
1. Introduction. One of the most versatile techniques in the theory of

nonlinear differential equations is the second method of Lyupunov. It
depends crucially upon the fact that a function satisfying the scalar in-
equality

(1.) du < u, u(0) c,
dt

is majorized by the solution of the equation

dv v, v(O) c.(1.2)
dt

It is natural to ask whether it might be more convenient in some circum-
stunces to use ector Lyapunov function rther than a scalar function.
If it is, then we require an analogue of the foregoing majoriztion relation.
It turns ou that one exists; see [1, 2, 3]. We shall discuss it in the next
section and give an application.

In the course of discussion of this result with J. P. LaSalle, he pointed
out that J. K. Hale had independently arrived ut the use of a vector
Lyapunov function. His results will be presented elsewhere.

2. A lemma concerning nonnegative matrices. Let A be a constant
matrix and e"t denote the matrix exponentiul, the solution of the matrix
equation

dX AX, X(O) I.(2.1)
dt

In order that all the elements of eA be nonnegative for >-_ 0, it is necessary
and sufficient that a- >= 0, i j. For various simple proofs of this useful
result, see [2], [3].
From this we readily derive the following lemma.
LEMMA. If aij >= O, i j, then

< Ax, x(O) c,dr-

* Received by the editors May 29, 1962. This study was sponsored by the United
Stutes Air Force under Project RANDContrct No. AF 49(638)-700--monitored
by the Directorate of Development Plunning, Deputy Chief of Staff, Research nd
Technology, Hq USAF. Views or conclusions contained herein should not be in-
terpreted as representing the official opinion or policy of the United States Air Force.

The RAND Corporation, Santu Monic, California.
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implies x <= y where

(2.3) dy Ay, y(O) c.
dt

Here x =< y implies component-by-component majorization.

3. An application. As an application of the foregoing result, suppose
that u, v are two functions of satisfying the inequalities

(3.1) 0

and the differential equations

du
--a u -- a v -t- b uv, u(O) c,

dt
(3.2)

dv
a2 u a. v -t- b u, v(O) c.,

dt

where aij >= 0, bl, b2 >_- 0, c, c: >= 0. If the characteristic roots of

(3.3) A -all a12
a21 a22

have negative real parts and c, c2 are small enough, then Poincar-Lya-
punov theory asserts that the solution of (3.2) approaches zero.
Using the lemma given above, we can obtain a nonlocal result. From

(3.2) and (3.1) we have

(3.4)
== < --a u -- a -t- b k u,dt

dv < alu- a2v if- b,k,dt

whence the solution is maiorized by the solution of

dw
dt

dz
dt a21w--a2z + b2lclz,

w(O) c,

z(O) c,

i.e., 0 <- u <= w, 0 <= v <. z. The solutions of (3.5) approach zero as t--
if

(3.6) B --a q- b k2 a12

at --a: -at- b2 k

is a stability matrix.
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It is easy to see how this method may be extended to treat systems of
any order. Furthermore, it may be used for any system of equations for
which a corresponding positivity relhtion holds. For some results of this
type see [3] and the references given there.

4. Lyapunov functions. Given a vector system of differential equations

dx
d-- Ax + By - g(x, y), x(O) a,

(4.1)
d Cx + Dy W h(x,y), y(O) b,
dt

where x and y are m and n dimensional vectors respectively, and A, B,
C, D are matrices of appropriate dimensions, we form the nonnegative
functions u and v by means of the quadratic forms

(4.2) u--- (x, Rx), v (y, Sy),

where R and S are suitably chosen positive-definite matrices. Given a
priori knowledge of the bounds on the components of x and y, we have
numbers corresponding to kl and k2, and can obtain various conditions
for stability of the null solution.

In any given situation, we can group the equations in a number of
different ways and obtain a number of sufficient conditions for stability
of the equilibrium solution.
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EXTRACTION AND DETECTION PROBLEMS AND
REPRODUCING KERNEL HILBERT SPACES*

EMANUEL PARZEN
Summary. Problems involving the extraction, detection and prediction of signals

in the presence of noise are among the central problems of statistical communication
theory. Over the past few years I have sought to develop an approach to such prob-
lems which (i) would simultaneously apply to time series which are stationary or
non-stationary, discrete parameter or continuous parameter, univariate or multi-
variate, and (ii) would distinguish between the statistical and analytical aspects of
these problems, and in particular would clarify the role played by various widely
employed analytical techniques (such as the Wiener-Hopf equation and eigenfunc-
tion expansions).

In developing this approach, two basic concepts are used: the notion of the proba-
bility density functional of a time series and the notion of a reproducing kernel
Hilbert space. The aim of this paper is to sketch some of the main results which may
be obtained by means of this approach.
In sections 1 and 2, it is shown how one may define and obtain a formula for the

probability density functional of a normal time series. This formula is used to study
the structure of optimum estimators (section 3) and detectors (section 4) by express-
ing them in a coordinate free way in terms of inner products in a reproducing kernel
Hilbert space. Various ways of evaluating such inner products are discussed in sec-
tions 5 and 6. In section 7, it is shown how reproducing kernel Hilbert spaces provide
a solution to the problems of minimum mean square error linear and non-linear
prediction.

1. The probability density functional of a normal time series. Let,
S(t), T} and {N(t), T} be time series, called respectively the

signal process and the noise process. Let 2 be the space of all real valued
functions on T. Let P>+ and P,+N be probability measures defined on the
measurable subsets B of 2 by

(1.1) P[B] Prob [{N(t), t T} B]

(1.2) Ps+N[B] Prob [l S(t) + N(t), T} B].

We seek to determine, if it exists, a function p on 2 with the property that

(1.3) Ps+ [B] f p dP

The function p may be called the probability density functional of P,+
* Received by the editors June 24, 1962. Prepared under contract Nonr 3440(00)

for the Office of Naval Research.
Stanford University, Stanford, California.
Editorial note. To study the control problem in a realistic setting, stochastic con-

siderations are essential. This paper does not directly consider the control problem,
but it does describe a recent area of mathematical development which is impor-
tant to stochastic optimization and control. In particular, the results in linear and
nonlinear prediction are immediately applicable to that class of optimal control
problems where stochastic and optimization considerations can be separated.
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with respect to P in order to emphasize that its argument is a function
{X(t), T}. It is also denoted p(X(t), T) and called the probability
density functional of the signal plus noise process

(1.4) X(t) S(t) + N(t), t T,

with respect to the noise process {N(t), Tt The function p is often
written symbolically as a derivative,

dP+v(1..5) P- dPv

and called the Radon-Nikodym derivative of P,+v with respect to P
(see [4], p. 329).
A necessary and sufficient condition that the probability density (1.5)

exist is that Ps+N be absolutely continuous with respect to PN in the sense
that, for every measurable subset A of

(1.6) Pu[A] 0 implies Ps+[A] 0.

In order that Ps+2v not be absolutely continuous with respect to P it is
necessary and sufficient that there exist a set A such that

(1.7) P[A] 0 and Ps+N[A] > 0.

The probability measures P and Ps+N are said to be orthogonal if there
exists a set A such that

(1.8) Pv[A] 0 and Ps+[A] 1.

One can regard (1.8) as the extreme case of not being absolutely con-
tinuous.
The notion of orthogonality derives its importance from detection theory

(the theory of testing hypotheses). The simple hypotheses

H0: X(.) N(.)

Hi:X(.) (.) -- N(.)

are said to be perfectly detectable if there exists a set A such that

Pv[A] Prob [{X(t), t T} A IHo] O,
(1.9)

Ps+N[A] Prob [IX(t), TI A[H1] 1.

Clearly, the hypotheses H0 and HI are perfectly detectable if and only if
P and Ps+ are orthogonal.

Given the probability measures P and P+, the following questions
arise"

(i) to determine whether PN and P+ are orthogonal;
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(ii) to determine whether P+N is absolutely continuous with respect
to PN

(iii)to determine the Radon-Nikodym derivative (1.5) if it exists.
To answer these questions, the natural way to proceed is to approximate

the infinite dimensional case by finite dimensional cases. For any finite
subset

(1.10) T’ Its, ..., t} o T,

let P,r, and Ps+,r, denote the probability distributions of {X(t), T’/
under P and Ps+ respectively. Assume that Ps+v.r, is absolutely con-
tinuous with respect to P,r, with Radon-Nikodym derivative denoted

dPs+v,r,(1.11) pr,
dP,r,

The divergence between Ps+ and PN on the basis of having observed
{X(t), T’ is defined by

Jr, Es+[log p,,] E[log pr,]
(1.12) f, log pr, dPs+v fo log pr, dPv.

.(The intuitive meaning of the divergence is described in section 4; see
(4.8).) Using the theory of martingales it may be shown that

(1.13) 0 =< Jr, -<_ Jr,, if T’ T.
Consequently, the limit

(1.14) Jr limr,_r Jr,

exists and is finite or infinite. Further, it may be shown [3] that
(i) if Jr < , then Ps+ is absolutely continuous with respect to
P and

dPs+ lira pr,(1.15) P dPv

(ii) if Jr , and both the time series IN(t), T} and IS(t), T}
are normal, then Ps+ and P are orthogonal.
We next apply these criteria under the following assumptions.
The noise process {N(t), T} is a normal process with zero means and

covariance kernel

(1.16) K(s, t) E[N(s)N(t)]

which is positive definite in the sense that for every finite subset T’



38 EMANUEL PARZEN

If1 tn} of T, the covariance matrix

K(t, ti) K(t t,)
(1.17) Kr, IK(t t)

K(t,,t) K(t,t)

is non-singular, with inverse matrix denoted

(1.18) K IK-l(t, t)}.

(It should be noted that the assumption of positive definiteness is only
made for mathematical convenience in the present exposition; it can be
omitted.

In regard to the signal process, two cases are of most interest"
(i) Sure signal case. S(t), T} is a non-random function.
(ii) Stochastic signal case. {S(t), T} is a normal time series, inde-

pendent of the noise process, with zero means and positive definite co-
variance kernel

(1.19) R(s, t) E[S(s)S(t)].

To employ the criterion (1.15), we first need to compute the divergence
Jr,, defined by (1.12). In this paper we consider explicitly only the sure
signal case; the stochastic signal case is considered in [10].

In the sure signal case, one can show that

(.20) o p, (x, ),, (, ),,

where we define for any functions f and g on T

(1.21) (f, g)K,r, f(s)K-(s, t)g(t).
s,tET’

Consequently

,] E[(X, ) ,1 (, ),,,Jr, ],.+N[(X, S)K,(1.22)

and

(1.23) Jr < if and only if lim (S,S)K,r, < .
T ’-T

In words, in the sure signal case, Ps+v is absolutely continuous with
Trespect to P if and only if (S, S),r, approaches a limit as tends to T.

Fortunately it is possible to characterize those functions S(. which have
this property. To do this, we introduce the notion of a reproducing kernel
IIilbert space.

2. Reproducing kernel Hilbert spaces. Let K(s, t) be the covariance
kernel of a time series IX(t), T}. For each in T, let K(., t) be the
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function on T whose value at s in T is equal to K(s, t). It may be shown
(see Aronszain [1]) that there exists a unique Hilbert space, denoted
H(K; T) or H(K), with the following properties:

(i) the members of H(K; T) are real vMued functions on T;
(ii) for every in T,

(I) K(., t) H(K; T);

(iii) for every in T and f in H(K; T)

(II) f(t) (f, K(., t) ):,,

where the inner product between two functions f and g in H(K; T) is
written (f, g),r or, for brevity, (f, g).
Example 2A. Suppose T [1, 2, -.., n] for some positive integer n, and

that the covariance kernel K is given by a symmetric positive definite
matrix {K.} with inverse {K’}. The corresponding reproducing kernel
space H(K; T) consists of all n-dimensionM vectors f (f, ..., f)
with inner product

(2 1) (f, g):.r ’Ktd gt.
s,t.l

To prove (2.1) one need only verify that the reproducing property holds:
for u 1,..., n,

(f, K.u).v fsK K,, fs(s, u) fi,
s,t=l

The inner product may also be written as a ratio of determinants:

(2.2) (f, g),
K K f

Knl Knn fn
gl gn 0

Kll Kin

K,I...K,,

To prove (2.2) one again need only verify the reproducing property. In
the case in which the covariance matrix K is singular, one may define the
corresponding reproducing kernel inner product in terms of the pseudo-
inverse of the matrix K.
Example 2B. Let T {t: a =< _-< b} and let {N(t), a =< _-< b} be the

Wiener process; that is, it has independent increments and covariance
function

(2.3) K(s, t) min (s, t)

for some parameter as. Consider the Hilbert space H(K; T) consisting
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of all functions f on a _-< =< b of the form

(2.4) f(t) f(a) + f’(u) du

for some square integrable measurable function f’ on a =< _-< b (which
can be called the L2-derivative of f), with inner product defined by

1t:(2.5) (f, g):,, p f(a)g(a) + f u) (u) g

If one defines

It(u) 1 if a-< u =< t,
(2.6)

=0 if t<u<=b,

one may rewrite (2.4)

f(t) f(a) + (a)It(u) du.

Now the covariance kernel K(s, t) may be represented

K(s, t) 2a + I(u)It(u) du.

Therefore, for each in T, K(., t) belongs to H(K; T) with L2 derivative,

d__ K(s, t) It(s).
ds

Further

I )d(f, K(., t) ), f(a)a + (u) (u

f’(u) du f(t).

We thus see that the reproducing kernel Hilbert space corresponding to
the covariance kernel (2.3) consists of all L2-differentiable functions on T
with inner product given by (2.5).
The relevance of the theory of reproducing kernel Hilbert spaces to the

theory of probability density functionals derives from the following fact:
it may be shown (using martingale theory) that

(2.7) lim (S, S),r, < if and only if S H(K; T).
T ’-T

Further, if S H(K; T), then

(2.8) lim (S, S),r, (S, S):,r.
T ’-T
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It follows that, in the sure signal case, Ps+N is absolutely continuous with
respect to PN if and only if the signal function IS(t), T} belongs to
the reproducing kernel Hilbert space H(K; T) corresponding to the co-
variance kernel K of the noise process IX(t), T}. If S H(K; T),
then the probability density functional is given by

(2.9) p(X(t), T) dP+
dP

exp (X,

where by (X, S)K,r we mean the limit (in the sense both of convergence
with probability one and convergence in quadratic mean)

(2.10) (X, S),r lim (X, S),r,.
T’->T

It should be emphasized that although we use inner product notation
to write (X, S),r, this is not a true inner product between two elements
in a Hilbert space, since the sample function IX(t), T} does not belong
to H(K); that is,

lim (X, X),r, is infinite with probability one.
T’->T

In practice, it will be clear how to define (X, S). by suitably modifying
the expression for the inner product between two functions in H(K).
Thus, for the covariance kernel given by (2.3), instead of the expression

(X, S),r X(a)S(a) -t- (u) (u) d

suggested by (2.5) one may show that

1 X(a)S(a) + (u) dX(u)x z) ,. -There are a variety of ways in which one can determine whether a func-
tion S belongs to a reproducing kernel Hilbert space H(K; T) and compute
the norm (S, S),r and the random variable (X, S)K,r. These are dis-
cussed in section 5. However one general principle deserves to be stated
at this point.

Roughly speaking, a function g(. belongs to a reproducing kernel
I-Iilbert space H(K; T) only if it is at least as "smooth" or "regular" as
the functions K(., t), since every function g in H(K; T) is either a linear
combination

g(.) tcK(.,t)
i1

or a limit of such linear combinations. For example, if T is an interval and
K is continuous on T (R) T, then every function in H(K; T) is continuous;
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if K is twice differentiable on T (R) T, then every function in H(K; T) is
differentiable.
We are thus led to the following heuristic conclusion: in order that a

signal not be perfectly detectable in the presence of a noise, it is necessary and
sufftcient that the signal be as "smooth" or as "regular" as the noise. In the
case of a sure signal, the signal is as smooth as the noise if and only if
S H(K; T) where K is the covariance kernel of the noise. In the case
of stochastic signals, the signal is as smooth as the noise if S H(K; T)
for almost all sample functions of the signal process" a rigorous formula-
tion of this assertion is given in [10].

3. The structure of optimum extractors. In sections 3 and 4 we show
how the formula for the probability density functional given by (2.9)
may be used to study the structure of optimum extractors and detectors.
To begin with we consider a time series {X(t), T} satisfying the

model

(3.1) X(t) Og(t) -N(t)

where
(i) 0 is a parameter varying in a known set
(ii) g (t), T} is a known non-random function;
(iii) the noise process IN(t), t T} is normal with zero means and

known covariance kernel K.
We call g(. a regression function, and call the signal process

(3.2) S(t) Og(t),

a signal of regression type with a one-dimensional parameter. We assume
that g(.) H(K; T).
We let p(X(t), T IO denote the probability density functional of

the signal plus noise process {Og(t) zc N(t), T} with respect to the
noise process IN(t), T}. By (2.9) it follows that

(3.3) p(X(t), T o) exp [o(x, g)r,T 1/2 02(g, g).T].

For ease of writing in the sequel, we employ the notation

(3.4) V (X, g),r, G (g,

and consequently may write

(3.3)’ p(X(t), T 0) exp [OV 1/20G].
Estimation of O. Suppose that the parameter 0 is assumed to be a random

variable with probability density function p(0) with respect to a measure
on the measurable subsets of the parameter space . Then the condi-
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tionl probability density p(O X(t), T) of 0, given IX(t),
cn be determined by the formul (usuMly cMled Byes’ rule)

(3.5) p(O X(t), T) p(X(t), T lO)p(O)

fo p(x(t), T lO)p(O

For the sake of brevity in writing, one refers to the conditional probability
density p(OIX(t), T) as the posterior density of 0, and refers to the
(marginal) probability density p(O) as the prior density of 0.
As with any distribution, the mean and vriance of the posterior dis-

tribution of 0 represent rough measures of the center and spread of the
distribution; the mean of the posterior distribution (or conditional mean
of 0, given X(t), T} is denoted by

E[OIX(t), T] f 0 p(OIS(t), T) dt..) O*

The variance of the posterior distribution (or conditional variance of 0,
given IX(t), T} is denoted by

(3.7) Var [O IX(t), T] (O O*)p(O X(t), < T) dtz.

It may happen that one desires a point estimate of 0. The conditional
mean 0* is often regarded as an optimum point estimate since it has the
property that it is the minimum mean square error estimate of 0 in the
sense that

(3.8) E[I

for any functional q(X(t), T) on the sample space with finite second
moment. The mean square estimation error E[I 0- 0* ] is given by the
mean of the conditional variance,

(3.9) E[I 0 0* [21 E[Var loiS(t), T]].

We shall refer to the conditional mean 0* as the Bayes estimate of 0.
To illustrate these considerations, let us assume that the prior proba-

bility density of 0 is given by

(3.10) p(O)

for some known constants and a2; in words, 0 is normally distributed
with mean and variance z2. The posterior density of 0, given {X(t),
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T}, is then given by

p(O X(t), T)

(3.11)

exp [aO 1/20]

exp a0 - 3,02 dO

1(0_%/2---
exp

where
--2(3.12) V -t- -2, G-t-

In words, the conditional distribution of 0, given {X(t), T}, is normal
with mean

{3.13) E[O X(t), T]

and variance

1{3.14) Var [o IX(t), T]

The Bayes estimate 0* of 0 is given by the conditional mean

V + o’-
(3.15) O* E[O X(t), T]

G-0.-2

with mean square estimation error given by

(3.16) E[I 0 0*[2] E[Var [O IX(t), T]] {G q- 0"--2} -1.
In order to understand the meaning of (3.13) and (3.14) it should be

noted that the variance 0" of a normally distributed random variable 0
is a measure of the length of the interval in which an observed value of
the random variable may be expected to lie (for example, with probability
exceeding 0.99, 0 will lie in the interval of length 60" centered at the mean
of 0). Now in considering the problem of extracting a signal from noise,
we may be very uncertain about the possible range of values of the param-

2.eter 0. This corresponds to assuming that the prior variance 0" is very large
(tending to infinity). Now as 0" --(3.17) O* G-1V,
(3.18) E[I 0 0* 12] --+ G-1.

Thus if the prior variance 0" of the parameter 0 is very large, the Bayes
estimate is approximately given by the estimate 0"* defined by

(3.19) 0"*= G-1V
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with mean square estimation error

(3.20) E[ 0 0"* ] G-.
It is easy to verify that 0"* is the maximum likelihood estimate in the

sense that

(3.21) p(X(t), T[0**) max p(X(t), T IO ).

It may also be shown [8] that 0"* is the minimum variance unbiased esti-
mate and the minimum variance unbiased linear estimate (and that 0*
is the Bayes lineur estimute).
We next rewrite the Bayes estimate in a way which is very useful for

applications. Define

i={E[10 1]1-(3.22) I** [E[[ 0 0"* []} - G,

I* {E[I o o* []}-.
Intuitively, i, I**, and I* represent the "information" contained respec-
tively in the prior estimate , the maximum likelihood estimate 0"*, and
the Bayes estimate *. The Bayes estimate may be written

O* (1")-1{**0** + i},
(3.23)

1" ** + i.

In words, the Byes estimate is a weighted average of the maximum
likelihood estimate and of the prior estimate, the weights being propor-
tional to the "information" in each estimate.
One important application of (3.23) is to the problems of satellite orbit

tracking and fitting trend line to economic time series. In these problems
one is called upon to publish a succession

*, 02",

of estimates of a parameter at various times

T, T2, ....
One way of doing this is to let 0* be the maximum likelihood estimate of
based on the data which has become available in the interval T_ to

T. As the Bayes estimate of * at time T one takes

I**** + I* *n--1 On--1
(3.24) I** *+I_

I* =I*+1"n--1.
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The foregoing results were all derived assuming a one-parameter model
of the form of (3.1). They may be readily extended to a multiparameter
model of the form

(3.25) X(t) Ojg(t) + N(t)

where for j 1, 2, k, 0. is a parameter varying in - < 0. <
and Ig(t), T} is a known function belonging to H(K; T). Define

(3.26)

(3.27)

V. (X, g), Gs (g, g),

Vii
G

Gkl G
The probability density function of the time series (signal plus noise
process) with respect to the noise process is given by

(3.28) p(X(t), T O) exp [OtrV 1/2

where we write "tr" to denote the transpose of a vector or matrix. The maxi-
mum likelihood estimate 0"* of 0 is given by (compare (3.19))

(3.29) 0"* G-IV
with mean square estimation error matrix

(3.30) E[(0 0"*) (0 0"*)] G-1,
assuming G is a non-singular matrix. Define

(3.31) I**= G

to be the "information" matrix of the maximum likelihood estimate
0"*. If the vector parameter 0 possesses a prior distribution which is multi-
variate normal with mean

(3.32) E[0]

and non-singular covariance matrix

(3.33) E[(0- 0)(0- )]

then the Bayes estimate 0* of 0 is given by

(3.34) 0* (I** -F i)-l(I**0** -F iO)

with mean square estimation error matrix

(3.35) E[(t- 0")(0- 0")] (I** -4-
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4. The structure of optimum detectors. The basic concepts involved in
determining "optimum" detection systems are best introduced by con-
sidering the following four detection problems"

I Detecting the presence of a signal of specified shape.
II Detecting the presence of a signal of regression type.

III Detecting the presence of a stochastic signal.
IV Classifying (or decoding) signals.

Some of the results discussed in this section are related to recent work of
Kailath [5] and Turin [15].

Case I. Detecting the presence of a signal of specified shape. Given an
observed time series IX(t), T} one desires to test the simple hypothesis
H0 :X(t) N(t), normal noise alone is present,

against the simple alternative hypothesis
H :X(t) S(t) q- N(t), .a signal S(t) of prescribed shape is present,

by choosing a subset R of the space t of possible realizations of the time
series which will be the rejection region for H0 that is, one says signal is
present if IX(t), TI belongs to R and one says that noise alone is
presentif IX(t), T} does not belong to R.
While there exist a number of criteria for optimally choosing the reiec-

tion region R, it turns out that the optimum reiection region R may in
all cases be expressed as the set of observations IX(t), TI for which
the probability density of the signal plus noise process with respect to the
noise process

(4.1) p(X(t), T) exp[(X, S) 1/2 (S, S)]

is above a certain threshold value A0.
The threshold level A0 depends on the criterion employed. In the so-

called Bayes case,

(4.2) A0 (1 ps)L/psL

where L is the cost of a false alarm (of saying that signal is present when
in fact noise alone is present), LH is the cost of a detection failure (of
saying that noise alone is present when in fact signal is present), and p
is the prior probability that signal is present. In the so-called Neyman-
Pearson case, one chooses a desired level a for the false alarm probability

(4.3) P[{X(t), t T} R1 [H0] P[p(X(t), t T) >= A0 H0] a.

It should be noted that in the Bayes case the critical region R1 has the
property that it minimizes the expected cost of an incorrect decision

(4.4)
(1 p,)LP[IX(t), T} RI H0]

q- pLH{1 P[{X(t), T} R H]}
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while in the Neyman-Pearson case the critical region R1 has the property
that it minimizes the probability

1 P[IX(t), C T} RI
that one will fail to detect a signal when it is present, subject to the re-
striction that the false alarm probability is equal to a.

The probabilities in (4.3) and (4.5) are easily evaluated if one uses the
fact that, since the right hand side of (4.1) is a monotone increasing func-
tion of (X, S)K, the critical region for testing H0 against H can be ex-
pressed as the set of observations {X(t), t T/ for which (X, S)K is
above a certain threhsold &. Since (X, S) is a linear functional, it fol-
lows that it is normally distributed. It may be shown that

under H0 E[(X, S)] 0, Var [(X, S)] (S, S)

under H :El(X, S)K] (S, S)K, Var [(X, S)] (S, S).

Since the critical region may be expressed in terms of (X, S), we call
(X, S): an optimum detector. The detector (X, S)K, which in the case
that T is finite is

(4.7) (X, S) E X(t) E KtUS(u),
tET uET

is said to be a correlation detector or a matched filter since it is obtained by
’correlating’ or ’matching’ the specified signal shape S(t) with the observed
time series X(t).
A convenient measure of how far it is possible to discriminate between

two simple hypotheses H1 and H0 is provided by the divergence, a quantity
originating from the concepts of information theory (see [6]) and defined
by

(4.8)

where

J(Ho H1) E,1 [log p(X(t), T)] E,0 [log p(X(t), T]

p(X(t), T)
dP,

is the probability density of the observations under H with respect to the
probability measure corresponding to H0 (the subscript H. on an expecta-
tion operator indicates that the expectation is taken with respect to the
probability corresponding to H.). For p(X(t), T) given by (4.1)

(4.9) J(Ho, H) E,[(X, S)] E,0[(X, S)] (S, S).

One can regard (S, S)K as a measure of the signal to noise ratio. One
thus sees that the larger the signal to noise ratio, the better is one able to
discriminate signal plus noise from noise alone.
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Case II. Testing for a regression signal. Given an observed time series
{X(t), T}, one desires to test the simple hypothesis

H0 :X(t) N(t), noise alone is present,

against the composite alternative hypothesis

H :X(t) Og(t) q- N(t) for some 0, signal is present.

It is assumed that g belongs to the reproducing kernel Hilbert space H(K)
corresponding to the corvariance kernel K of the noise.
According to the likelihood ratio principle, the rejection region for

testing H0 against H is given by the set of values {X(t), T} for which
the supremum

(4.10) sup_<o< p(X(t), T O)

is above a suitable threshold value. If 0"* is the maximum likelihood esti-
mate of 0, then the supremum is equal to

1 0"*(4.11) exp {O**V ’G} exp f --} exp{O**I**O**}.
In the case of a multi-parameter model of the form of (3.25), the supremum
in (4.10) is equal to

(4.12) exp {1/2 VtrG-1V} exp {1/20**trI**O**}.
The probability in (4.3) is easily evaluated using the fact that

under H0, the quadratic form Vt’G-1V is x distributed
(4.13)

with/ degrees of freedom.

It should be noted that in Case I the optimum detector (X, S) was a
linear function of the observations. In Case II, the optimum detector
VtrG-V is a quadratic function of the observations {X(t), T}. Further
one can write VtG-V as a generalized correlation detector

(4.14) VtG-*V (X, g’G-V): (X, gt’0**)

where gt" (g, .-., g) is a function of t. Now the maximum likelihood
estimate of the value S(t) at of the signal

gtrO(4.15) S(.) .=O g(

is given by the value at of the function

(4. ) 8** (.) 0"*.
Consequently,

(4.17) VtrG-1V (X, S**)K.
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In words, the optimum detector in Case II is of the same form as in Case
I except that instead of correlating the prescribed signal shape S(. with
the observed time series X(-) one correlates an estimated signal shape.

Case III. Testing for a stochastic signal. One way in which the problem of
detecting a stochastic signal arises is when one considers a regression
signal with random regression coefficients. More precisely, one desires to
test the simple hypothesis

H0 "X(.) N(.), noise alone is present,

against the simple alternative

H1 "X(.) 0trg(.) -t- N(-), where 0 is multivariate

normal with mean and covariance i-1.

The rejection region for testing H0 against H is given by the set of values
IX(t), TI for which the probability density function of signal plus
noise with respect to noise

(4.18) p(X(t), T) p(X(t), T lO)p(O) dO dt

is above a certain threshold value. Define (using the notation defined in
(3.27) and (3.33))

= V + i,I* G + i(4.19)

Then

atq*-la tiO O*tq*O* O:iO
(4.21)

(X, S*) 0t[(0* 0),

where 0* I*-a is the Bayes estimate of 0, and S* O*tg is the Bayes
estimate of S(. Otg( ). An optimum detector is given by the last
term of (4.21); if 0 0, then it is a generalized correlation detector.

Case IV. Classifying or decoding signals. The output of a certain channel
is assumed to be a time series of the form

X(t) S(t) +N(t), for some j-- 1,2, ...,k,
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where the parameter j characterizes the waveform that was the input of
the channel. On the basis of the observed time series IX(t), T}, one
desires to decide which signal was transmitted, that is, one desires to
divide the space t of possible realizations of the time series into/c regions

such that if IX(t), T/belongs to R-, one decides that thej-th waveform
was transmitted (was the channel input). Thus the problem is one of
decoding a received message in such a way as to maximize the probability
of a correct classification (the encoding problem is concerned with choosing
the transmitted waveforms so as to maximize the probability of correct
decoding using the optimum decoder).
Forj 1, 2, .-., k, let

p(X(t), T)

denote the probability density of the time series S(t) + N(t), T} with
respect to the noise process IN(t), T}, and let r be the prior probability
that St(" was received. The probability of a correct decision (using
classification regions R1, -.., R) is given by

r p(X(t), T) dPN.

It may be shown (see [13], p. 308) that in order to maximize the probability
of a correct decision one should adopt the classification regions R, .-., R
defined by

R {(X(t), T): rp(X(t), T) max rp(X(t), T)}.
i1,.

In other words, the classification regions which maximize the probability
of a correct classification coincide with the classification regions one would
obtain by maximizing the posterior probability

r pj(X(t), T)
P[ -th waveform transmitted X(t), T

In any event, the first step in determining the classification regions is to
compute the probability density functionals p(X(t), T) which, in the
case of normal time series, may be shown to depend on the computation
of various inner products in a suitable reproducing kernel Hilbert space.

5. Evaluation of reproducing kernel inner products, orthonormal ex-
pansions, and eigenfunction expansions. The developments of sections
2, 3, and 4 show that to determine optimum extractors and detectors for
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signals in normal noise, as well as to evaluate the probability density
function of signal plus (normal) noise with respect to (normal) noise, it
suffices to evaluate the reproducing kernel inner product

(5.1) (h,h):

of various functions h, and the corresponding random variubles

(.) (Z, h)

In this section we discuss various methods of evaluating expressions of the
form of (5.1) and (5.2).

Explicit formulae for expressions of the form of (5.1) and (5.2) can be
given if the noise process IN(t), T} is one of the following types (stated
for the continuous parameter uniwriate case; similar results hold in the
discrete parameter and multivariate cases):

(1) T is a finite interval, and the noise process has independent (or
orthogonal) increments so that its cowriance kernel is of the form

K(s, t) G(min Is, t})

for some continuous non-decreasing function G(u).
(2) T is a finite interval, and the noise process is Markov.
(3) T is a finite interval, and the noise process is an autoregressive

scheme in the sense that it satisfies the stochastic differential equation

a(t) N(m-)(t) q’(t)
k=O

where v’(t) is a white noise (the symbolic derivative of a process (t) with
stationary and independent increments), m is a constant (called the order
of the scheme), and a(t) are non-random functions of time.

(4) T is a semi-infinite interval, -- =< to, and the noise process
can be represented as the response to a white noise input of a filter de-
scribed by a time-varying impulse response function W(t, s):

N(t) J_ W(t, s) d,(s).

(5) T is a semi-infinite interval, < -< to, and the noise process is
stationary (more precisely, covariance stationary) and possesses a rational
spectral density function or, more generally, is purely non-deterministic.

In many applications one will not feel iustified in assuming a specific
model of one of the above type. Nevertheless explicit formulae for ex-
pressions of the form (5.1) and (5.2) can be constructed. Indeed they can
be constructed in a multitude of ways, as we now show. In the course of
our discussion we will also clarify the connection between

(i) reproducing kernel Hilbert spaces,
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(ii) orthonormal expansions for time series, and
(iii) expansions of time series in terms of eigenfunetions (often called

Karhunen-Love expansions).
Orthonormal expansions of time series. Using the Gram-Sehmidg orthog-

onalization procedure one may show that every time series [X(t), TI,
for which the Hilbert space L2(X(t), T) spanned by it is separable,
may be written as an infinite series

x(t) T,

where (i) {n} is an orthonormal sequence of random variables,

lifa

(5.4)

(ii) the function (t) is given by (for tin T and 1, 2,

(iii) for each in T

(t) E[X(t)n],

E <

and (iv) for all s and in T

(5.7) E[X(s)X(t)] (s)(t).

A representation of the form of (5.3) is called an orthogonal decomposition
of the time series. It should be noted that the orthogonal decomposition is
not unique.
The importance of the representation (5.3) becomes clear if one bears in

mind that the time series X(t) is actually a function of two variables
X(t, o) where varies in T and varies in the space t on which X(t) is
defined as a random variable. By writing (5.3) in the form

x(t,

one sees that we have succeeded in decomposing the function of two vari-
ables X(t, ) into a sum of products of functions (t) and n(e) of one
variable. In a sense, we have succeeded in isolating the manner in which
X(t, ) depends on from the manner in which it depends on .

It may be shown that, in terms of an orthonormal decomposition, the
reproducing kernel Hilbert space H(K) may be expressed as follows"
H(K) consists of all functions h(t) on T which may be represented in the
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form

(5.8) h(t) _. h,,(t), T,

for some (necessarily unique) square summable sequence {h,}. The ex-
pressions in (5.1) and (5.2) are then given by

(5.9) (h, h).r ’ h,
(5.10) (h, X).r ’ hw

In order for (5.9) and (5.10) to be useful in practice one needs algorithms
for determining the sequences {h} and l}.

Let G be a Hilbert space whose members are functions on T. Suppose
that IX(t), T/possesses an orthogonal decomposition which in addition
to the properties (5.4)-(5.7) possesses the property that {(.),

1, 2, .../ is an orthogonal sequence of functions in G"

(5.11)

If (5.11) holds, it seems plausible that an explicit formula for v is given by

(x,(5.12)

since if one takes the inner product of both sides of (5.9) with . one
obtains

(5.13) (X, b.)a ,(, .), ,.(., .).

We discuss below the meaning of such expressions as (X, ,)a Similarly,
one may show that

(5.4) h, (h, ,),

We thus arrive at the following conclusion" an explicit expression for the
reproducing kernel inner products (5.1) and (5.2) can be obtained in terms
of inner products in any Hilbert space G in which there exists an orthogonal
sequence l ’ 1, 2, playing the role of coefficients in an orthogonal
representation of (X(t), T}.

In order to make precise the foregoing discussion we have
(i) to determine which Hilbert spaces G have the property that they

contain an orthogonal sequence {, 1, 2, "I playing the role of
coefficients in an orthogonal decomposition of {X(t), T1,
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(ii) to provide n algorithm for computing the orthogonl functions
{, 1, 2, ..-}.
As possible Hilbert spaces G we consider either L spces L(T,/, t) or

reproducing kernel Hilbert spces whose members re functions on T. The
spce L(T,/, z) consists of all/-mesumble functions g on T such that

g ll f lg(t)[e(dt) <(5.15)

where B is z-field of subsets of T nd z is mesure defined on B.
The notion of direct product spce plys n important prt in our

considerations. Given two function spces G nd G consisting of functions
defined on T nd T respectively, their direct product spce, denoted
G @ G, is the Hilbert spce completion of the set of functions g on T @ T
of the form

(5.16) g(t te) gx(t)g(t),

where g G and g G. The norm of a function in G @ G of the
form of (5.16) is defined by

(5.17) g llg

The function g defined by (5.16) is on occasion denoted by g @ g.
It should be noted that if G and G re reproducing kernel Hilbert

spces, with respective reproducing kernels K nd K defined on T @ T,
then GI G2 is reproducing kernel Hilbert spce with kernel K @ K,
where K1 @ K is function of four rel wribles defined by

(.lS) K K(s s t t) K(s t)K(s t)

(5.19) (g, K (R) K(.,., t, t:))a,(R)a: g(tl, t).

In the case that G G: L(T, [, ), G (R) G consists of all ( @ B-
measurable) functions g on T @ T such that

(5.20) 1 ,.
If G nd G re equM to the reproducing kernel Hilbert spce consisting of
M1 L-differentible functions on the interwl t: a b} with norm
squred

1 ’(t) dt,(5.2) (a) +
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then G1 (R) G. is a reproducing kernel Hilbert space with norm squared

g llol(R)a. - g (a, a) + a -ffs g(s, a) gs

(5.22) +If O 12oe
g(a’t) dt

+ ::g(s,t) dsdt.

Some indication of the method to be employed in solving the problem
posed after (5.14) can be obtained by considering the properties which the
sequence l} must have in order that the random variables l,}, defined by

(5.23)

be orthogonal. One may verify that

E[.] EIJ X(s).(s)(ds)fr X(t)(t)(dt)]

Now suppose the functions {1,1 not only have the property of being orthog-
onal as members of G, but also have the property that there exist non-zero
constants X such that, for a 1, 2, and in T,

(5.2) fr /.(s)K(s, t) t(ds)

Then

(5.26) E[.]

We now state conditions under which one can find functions l-} satisfying
(5.25) as the eigenfunctions of certain transformation.
A function belonging to the direct product Hilbert space G (R) G is said

to have finite double-G norm. One can prove the following theorem.
THEOREM. Let G be a Hilbert space of functions on T which is either an

L2-space or a reproducing kernel Hilbert space. Let {X(t), T} be a time
series with covariance lcernel K. Assume that K has finite double G-norm. Let
K denote the transformation on G defined as follows: for g in G, Kg is a function
on T with value at given by

(5.27) Kg(t) (g, K(., t))a.

Then (i) K is well defined and, for all g in G, Kg G; (ii) K is a linear,
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self-adjoint, non-negative definite, and completely continuous transformation
of G into itself.
A non-zero number ), is called an eigenvalue of K if there exists a non-zero

function g in G such that

the function g is called an eigenfunction corresponding to ),.

Since K is a self-adioint, non-negative definite, completely continuous
operator, it follows (see [14], p. 233) that the set /} of non-zero eigen-
values of K is an infinite sequence of positive numbers converging to zero;
arranging these eigenvalues in non-increasing order we write

(5.29) hi => h2 >_- }, ...-- 0,

making the convention that each eigenvalue is written as many times as
its multiplicity.
We let

(5.30) 1, 2

denote the sequence of corresponding normalized eigenfunctions; that is,

(5.31) K, ,
(5.32) (, )a (a, ).

It follows [13, p. 245] that the kernel K may be represented by the abso-
lutely convergent series (for all s and in T)

(5.33) K(s, t) ,(s)(t).

Further,

The reproducing kernel Hilbert space H(K) can be shown to consist of
all functions h which belong to the Hilbert subspace L( , 1, 2, of
G spanned by the eigenfunctions/} for which

The reproducing kernel inner product of two functions h and h in H(K)
can be represented in terms of their inner products in G with the eigen-
functions {}"

(h, h) =1 (h, ,)(h, ).
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The random variable (X, h)K is given by

(5.37) (X, h)K 1-- (x, )(h, ).

The expression (X, ) is well defined and satisfies

(5.38) E[[ (Z, )
One can iustify (5.38) in a number of ways.
Consider first the case that G is an L:-space. Then (X, )a is a stochastic

integral,

(X, ,) f X(t)(t) t(dt)

E[i (X, ,,,) ] ]r ] K(s, t)q,(s)q,(t) (ds) (dt)

In th eas that U is 8 reproduoing kernel Hilbr spao, w
(X,) as follows. From (5.aa) it follows th8 the time sries {X(t),
has the representation

(5.39) X(t) (t)

where } is n uncorrelated sequence of random vribles with mean
squares

(5.40) E[,] .
If we define

(5.41) (z, ) ,
then the symbolism (X, ) has M1 the formal properties we desire it to
hve. For example, to prove that

(5.42) Eli(X, ) [] ,
which follows by definition from (5.40) nd (5.41), we write

Eli(X, ) ]] E[(X X, ).

(K, @)

((K(., t), ), (t) .
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In practice one will be able to evaluate (X, )o as a stochastic integral.
Thus if T t" a -< _-< b} and G is the reproducing kernel Hilbert space
of L2 differentiable functions with norm satisfying (5.21), then

1 fb X’(X, o)o X(a)o(a) -+- (t)o,’(t) dt.
a

This expression is well defined as a stochastic integral if the covariance
kernel K(s, t) E[X(s)X(t)] is assumed to have continuous second
derivatives.

6. Iterative evaluation of reproducing kernel inner products. The
formulae (5.36) and (5.37) are not computationally convenient since they
involve the calculation of eigenvalues and eigenfunctions. It is possible to
give iterative methods (of steepest descent type) for evaluating the repro-
ducing kernel inner product (h, h)K and the corresponding random variable
(X,h)K.
Let {X(t), T} be a time series with covariance kernel K and corre-

sponding reproducing kernel Hilbert space H(K). Let G be a Hilbert space
such that K has finite double-G norm

K

Given a function h in H(K) one may generate (in a multitude of ways)
sequences/H} of functions in G such that

(6.2) lim E[[(X, h)K (X, H)o I"l 0,

(6.3) (h, h)K lim (K, H (R) H)o(R)o lim (KH, H)o.

Using the method of proof in [8], one may prove that a sequence
satisfying (6.2) and (6.3) is given by

(6.4) H,,+I-- H,,- a(KH,- h), n 1, 2,...

where H1 is chosen arbitrarily in G, and {a} is a sequence satisfying

(6.5) 0 < a <__ 2IN.
There exist a number of schemes for choosing the sequence {ad so as to

achieve fastest convergence;these will be discussed in a book in preparation
[121.

7. Linear and non-linear prediction. Reproducing kernel Hilbert spaces
also provide a formal solution to the problems of minimum mean square
error linear and non-linear prediction.
The Hilbert space spanned by a time series {X(t), T}, denoted

L(X(t), T), is defined as the smallest Hilbert space which contains all
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random wribles U of the form

u= cZ(t)

for some points t, ..., t in T and some real numbers c, -.., c. In-
tuitively, L(X(t), T) is the space of all random variables which re
linear functions, or functionals, of the time series {X(t), TI.
The space of all non-linear functionals in time series IX(t), TI,

denoted ll(X(t), T), is defined as the smallest Hilbert space con-
taining all random variables U which have finite second moment und are
of the form

U (X(t), ..., X(t))
for some t, ..., t in T nd some Borel function g(x, ..., x,).

Let U be a random variable (with finite second moment) whose value
it is desired to predict, using the observations {X(t), T1. The minimum
mean square error non-linear prediction of U, given X(t), T}, is defined
as that random variable U* in ll(X(t), T) satisfying

(7.1) E[[ U* U [] minv(x(t).tr) E[[ V U

The minimum mean square error (M.M.S.E.) linear predictor of U, given
{X(t), TI, is defined as hat random variable U* in L(X(t), T)
satisfying

(7.2) E[I U* U 1 minve(x(t).ter)Ell V U ]
It is easily shown that the M.M.S.E. non-linear predictor, of U, given

{X(t), T}, is the conditional mean of U given {X(t), T}, denoted
E[U[X(t), T], and defined as the unique random variable in ll(X(t),

T) with the property that

(7.3) E[VU] E[VE[UIX(t), T]]

for every V in ll(X(t), T). Similarly the M.M.S.E. linear predictor
of U, given {X(t), T}, is the projection of V onto {X(t), T}, denoted
E’[UIX(t), T] and defined as the unique random variable in L(X(t),

T) with the property that

(7.4) E[VU] E[VE’[UIX(t), T]]

for every V in L(X(t), T).
Define

(7.5) p(t) E[UX(t)],

(7.6) pv(t, v) E[UeX(t)].
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It may be shown that E[U[X(t), T] is the random variable U* which
has minimum mean square E[[ U* [] among all random variables satisfying
the restraint, for all in T and < v < ,
(7.7) E[U*ex()] pv(t, v).

Similarly E’[U X(t), T] is the random variable U* which has minimum
mean square among all random variables satisfying the restraint, for all
tin T,

(7.8) E[U*X(t)] pv(t).

To find the solutions u* of (7.7) and (7.8) one may proceed as follows.
For s and in T, and u, v , define

(7.9) K(s, t) E[X(s)X(t)]

(7.10) K(s, u; t, v) E[eX()e-x()].
Notice that K(s, u; t, v) is the two-dimensional characteristic function of
the time series (see [11] for a discussion of this terminology).

These functions are reproducing kernels. Further

(7.11) pu(t) H(K(s, t)), E’[UI X(t), T] (X, p)

(7.12) p(t, v) H(K(s, u; t, v) ), E[Ui X(t), T] (ex(), p):
In words, if one can find a representation for pv(. in terms of linear
operations on the functions/K( ", t), TI, then E’[UIX(t), T] can
be written in terms of the corresponding linear operations on the time
series {X(t), T}. Similarly, if one can find a representation for pv(.;
in terms of linear operations on the functions K(’, ", t, v), T, -< v < o}, then E[UIX(t), T] can be written in terms of the corre-
sponding linear operations on the family of random variubles lex(t),

T, --o < v < I. The expressions in (7.11) and (7.12) may be nu-
merically evaluated using the iterative methods discussed in section 6.
The solution to the non-linear prediction problem can be expressed in

terms of polynomiMs in the observed random variables IX(t), TI if
the following conditions are satisfied"

(i) for every in T and integer k,

E[] X(t)l] < ,
(ii) for every finite subset It1, ’’’, tl of T, and constants c, -.., c, the

probability distribution of =cX(t) is determined by its moments.
Assuming that these conditions are satisfied, define, for s, in T and

j,/= 1,2,..-,

(7.13) pv(t, to) E[UX(t)],
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(7.14)

Then

(7.15)

K(s, j; t, ) E[X(s)X(t)].

E[U X(t), T] (X(t), ):.
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ON A NEW IARTIAL DIFFERENTIAL EQUATION FOR THE
STABILITY ANALYSIS OF TIME INVARIANT

CONTROL SYSTEMS*

1. Introduction. The investigation of the stability properties of the
equilibrium point of a control system poses various problems which,
even if conceptually very similar, vary greatly in difficulty and in the
methods appropriate for their solutions.
The first and easiest problem is what we may call the stability analysis

of a completely defined system: given a particular control system, decide
what stability properties this equilibrium point has.
The second problem deals with a system having a fixed configuration,

but with parameters whose numerical values are to be determined. The
problem is to find the boundaries in the parameter space where the stability
properties of the system undergo a change.
The third problem is that of synthesizing stable systems and its solu-

tion implies knowledge of necessary and sufficient conditions that the
equilibrium point of the system be stable. This latter problem is far from
being solved and it is also doubtful if its practical solution will emerge
from the classical theory of stability.

For the solution of the second problem, various precise techniques
[1, 2, 3] have been proposed for the construction of suitable Lyapunov
functions. These techniques have solved many stability problems, but
there are systems for which they have failed. Each of these systems con-
stitutes then mathematical problem by itself and Lyapunov functions
must be constructed more or less by inspection [4, 5, 7]. All these methods
may be applied to the solution of the first problem.

This paper presents some new techniques leading to a new approach to
the problem of stability analysis within the framework of Lyapunov’s
direct method. The potentiality of this new approach has not been com-
pletely exploited in this paper and further results will be presented later.

This study is limited to the investigation of completely defined systems.
The new method for stability investigation which is the final outcome of
this work, will in principle always yield some solution of the stability
problem. The price we have to pay for assuring that the method always
works is the restriction to a particular class of Lyapunov functions. The
Lyapunov functions are solutions of a partial differential equation (19)
which turns out to be the generalization of an analogous equation proposed
by Zubov [8].

* Received by the editors August 3, 1962.
Instituto di M:eccsnics Applicsts del Politecnico, Milano. Visitor st the Re-

search Institute of Advanced Studies (RIAS), Baltimore, Maryland.
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2. Notations and terminology. We shall use standard vector notation
with the following conventions" capital letters are matrices, small Latin
letters are vectors, Greek letters and small Latin letters with subscripts
are scalars, except that t, v are scalars.
We shall denote by (x, y) the inner product of the two vectors x and y.
We shall denote the transpose of a matrix A by A’.
We shall call an equilibrium state that is stable but not asymptotically

stable wealcly stable.
We say that a scalar function (x) is positive (negative) definite

on the trajectories of a system in a region S E if (x) _>_ 0 ( (x) _-< 0)
in S and (x) 0 on any nonsingular solution of the system. By a Lya-
punov function we mean any scalar function which gives the answer to
the stability properties of a solution of a system.

Unless otherwise stated, we shall assume throughout that all the scalar
functions we use have continuous first partial derivatives.

3. Lyapunov’s second method. Lyapunov’s second method can be
codified in a set of theorems [6, 9, 10, 11, 12] which prove that if for a
given system there exists a scalar function with certain properties, called
a Lyapunov function, then one can draw conclusions about the stability
properties of the solutions of the system. There also exist a set of inverse
theorems [6, 12] which guarantee the existence of such a function.

Given the nonlinear autonomous dynamic system [13]

(1) 2 f(x), f(O) O,

where f (x) is a vector valued function, the problem of the stability analysis
of its equilibrium point is then formally reduced to the search for a positive
definite [14] scalar function (x) and a scalar function v v(x),
v(0) 0, such that the partial differential equation

k(x) (grad v(x), f(x) ) =1 --Ov f(x)

is satisfied.
From the form of the scalar function v(x), one is able to draw conclu-

sions about the stability properties of the solution x 0 of (1) and about
the range of these properties [15, 16].
The major problem is then to find a definite scalar function k(x), such

that the solution v v(x) of (2) satisfies the condition v(0) 0. The
inverse theorems [6, 12] guarantee that such scalar functions (x) and
v (x) exist. The stability problem is then reduced to the problem of finding
necessary and sufficient conditions that a given scalar function k(x) be
positive definite. The existence and the possibility of using such conditions
is however much in doubt.
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A different and perhaps more sensible approach is that of finding a
sufficient condition which guarantees that a scalar function (x) is at
least definite on the traiectories of (1) and such that there always exists a
function (x) satisfying this condition and a corresponding v v(x),
v (0) 0, which satisfies (2).
Now it is clearly possible to fix the form of (x) completely, and hence

reduce the stability problem strictly to the integration of a well defined
linear partial differential equation of the type (2). This approach however
does not have much practical interest, because the integration of this
equation usually requires the solution of (1).
The method we develop in this work overcomes these difficulties. This

method is essentially based upon two maior steps. The first is to change
the state variable x of the system to z as defined in. the.relations (33)-(38).
The second step is to study the solution of the nonlinear partial differential
equation (41). The function O(w2) O(zi) which appears on the right-
hand side of this equation is any scalar function which depends on only
one particular component of the new state vector z. If the scalar function
0 (w.) is definite and no degeneracy occurs, then the solution of (41) will
yield a Lyapunov function of (1).

In the following sections we assume that the problem of analyzing
a scalar function, that is the problem of deciding if a given scalar function
is positive or (negative) definite, positive (negative) semidefinite or
indefinite is solved. In fact, various techniques are available for this
analysis (reduction to a sum of squares, geometrical studies, etc.), and in
each particular case this question can usually be answered without dif-
ficulty

4. A generalization of Zubov’s equation. In this section we shall make
some remarks on the form of the scalar function (x) defined in (2).
These remarks will constitute the basis of our method.
We pose the following question. If an arbitrary scalar function vl vl (x)

is given and

(3) 1 (x) (grad vl (x), f(x)),

under what conditions on 1 (x) is it possible to compute from the scalar
function vl vl(x) a new scalar function v2 v.(x), such that

(x) (grad v2 (x), f (x)) has a certain required form?
Suppose that we are able to synthesize a scalar function having the

property of being definite along the trajectories of (1). Then the problem
of constructing a Lyapunov function from (2) can be thought of as that
of integrating a Pfaffian differential equation. We shall see that this point,
of view is quite rewarding.



66 e.P. SZEe6

Consider the Pfaffian form

(4) a (x) (y (x) dx)

and the corresponding Pfaffian differential equation

(5) (y(x), dx) O.

Let (x) be un integrating factor of this equation, that is

(6) (x)y (x) grad v (x).

The scalar function v v(x) is then a particular integral of (5), that is,

(7) dv (grad v (x) dx)

Consider now an arbitrary function a a(v). From (5) it follows that

da(8) t(x) - (y(x), dx) O.

By substituting (6) into (8) we have

da (grad v (x) dx) 0(9) d--
which from (7) is identically equal to

da dv da =0.(10) d-
These results can be summarized in the following
TEOaE 4.1 If (X) is an integrating factor of the Pfaffan differential

equation (4) with solution v v(x) and a a(v) is an arbitrary scalar
function, then (x) da/dv is also an integrating factor of (4) with solution

(,(x)) *().
The results of Theorem 4.1 re even more obvious if applied to (4).
In 3 we have shown that the stability problem is reduced to the search

for scalar functions v v (x), v(0) 0 and (x) positive definite on
the traiectories of (1). Then the problem may be reduced to that of seeking
a scalar function a(v) such that

da
(11) d- t(x)(x)
or

() ()()
The functional equation (12) can be readily solved if

() ((x)).(13) t(x)w(x)
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On the basis of these considerations we can develop the following pro-
cedure.
Take a scalar function vl vl (x), v (0) 0 and compute its total time

derivative

dv (grad v(x), f(x) ) ,),(x), "),(0) O.(14)
dt

Next look for a scalar function k (x) which is at least definite on the traiec-
tories of (1) and a scalar function (v), (s) ds < , such that

(5) () (v).
(x)

Then the differential equation

(16) da(v) (X) ()1)
dvl "(x)

may be integrated. Its solution a a(vl) a* (x) will be such that

(17) a grad (x)f(x) b(x)

which is at least definite on the trajectories of (1), and because of the
assumptions made on a(vl) and v (x), it will solve our stability problem.
By substituting (15) into (14) we obtain

dv (grad v(x), f(x) (x)(1S) d-/ fl(v)

which is a generalization of Zubov’s equation [8]"

(19) (grad v, f(x)) (x) (1 -]- v).

The stability theorem we deduce from (18) may be stated as
THEOREM 4.2. The stability problem of the solution x 0 of (1) is reduced

to finding scalar functions (x) b (x) fl (v) such that v (0) O,
1

fl (s) < b (x) definite on trajectories of (1).ds and is the

Let us now integrate equation (16),
vl

(20) .(v) (s) ds

from which we deduce
THEOREM 4.3. The solution x 0 of (1) is asymptotically stable in a

closed, bounded region S" a* (x) <= 8, > O, if there exist scalar functions
v (x), k (x), fl (vl) satisfying the conditions

(i) v (o) o,
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(ii) b (x) is negative definite on the trajectories of (1),

(21) (iii) () d < ,
(iv) o*(z) ()d > OinS, z O,a*(O) O,

and equation (18).
COnOLLARY 4.1. The solution x 0 of (1) is asymptotically stable in

the large if all the conditions of Theorem 4.3 are satisfied and

(22)
vl

lim a*(x) lim (s) ds .
COROLLAnY 4.2. If all the conditions of Theorem 4.3 are satisfied with the

sign of b(x) changed, then the solution x 0 of (1) is completely unstable
[17].
REMARK 4.1. It is always possible to give sufficient conditions for

complete instability, from any theorem on asymptotic stability. In the
following sections we are going to present numerous theorems on asymptotic
stability, and it is always implied, even if not explicitly stated, that a
similar theorem for completely instability holds.

Since given any scalar function v2 v2 (x) it is always possible to find a
functional (v(x)), 2(0) 0, such that the scalar function
2" (x) t (v (x)) is semidefinite, we can develop the following simplified
procedure for constructing Lyapunov’s functions.

Let us, first of all, seek a scalar function v v (x), v (0) 0, such that

dr2(23)
dt

(grad v(x), f(x)) O(v2)

where 0 0@2) is a bounded scalar function. Equation (20) is a special
case of (17).
Then it is always possible to integrate the equation

(2)
g.(v) U(v) (,)

dr2 0(v2)

and its solution a2 a2 @2) a* (x) will be such that

do/2(25)
dt

(grad a.* (x), f(x) ) 2" (x)

where t2* (x) is semidefinite. If no degeneracy occurs and if

v2

(26) 2(x) <

then the scalar function x2 a2* (x) is a Lyapunov function of (1).
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Theorems (4.1) and (4.2) and corollaries apply with minor changes to
this case.
The following theorem answers the question of the existence of solutions

of (23).
THEOREM 4.4. There always exists a scalar function O(v2) such that (23)

has a solution which satisfies the condition v2 (0) O. In particular if (1)
is asymptotically stable v(x) is definite and (v) may be chosen so that
0() ),v:,Relh} < 0.

Proof. This theorem may be proved directly following a method used in
[18], or by using the inverse theorem [6, 12]. Let us sketch a proof using
this latter way for the case of asymptotic stability.

Given any Lyapunov function v v (x), v (0) 0, (x) 0 for x 0,
v(0) 0, this function represents a hypersurface in E+I with a strong
minimum for x 0.
Take any section of this hypersurface with the hyperplane v const. 0.

This section is a closed bounded hypersurface. Let us represent it in para-
metric form

(27) x x(tl, ..., t,_).

Since O(x) > 0 for x 0 it is possible to construct a unique integral
surface S v* (x) of the equation

(28) b* (grad v* (x) f (x) -v* (x)

going through the hypersurface (27).
Consider the characteristic system of (28)

dr* dx(29) -v*- dt,
f(x)

-dt, i 1,...,n.

Since (1) is by assumption asymptotically stable, the solutions x xi(t),
v v (t) of (29) tend to zero as -- . Hence v* (x)Ix=0 0.
REMARK 4.2. An existence theorem analogous to Theorem 4.4 may be

proved also for (18). We notice that the necessary and sufficient conditions
that the scalar function (x) must satisfy for (18) to have a solution
Vl v (x) such that vl (0) 0 are not identical to the conditions on
(x) in Zubov’s equation (1.9). In this latter case,

(30) J0 (()) d <

a relation which in our case is only sufficient.
It is worthwhile to emphasize the maior differences between (18) and

(23). As we previously pointed out the v-functions a a* (x) obtained
from (18) are Lyapunov functions for (1). The only possible degenerate
case in which v is semidefinite will never arise.
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In fact if a a (x) is continuous and semidefinite then it has a strong
minimum on the manifold M on which a* (x) 0. Hence grad * (x) 0
on M and M is an integral manifold of (1). This contradicts the hypothesis
that (x) is definite on the traiectories of (1). This reasoning does not
apply to (23) where t* (x) is only semidefinite. Then a* (x) 2" (x) 0
on some integral manifold N. All the information we obtain in this case
concerns the stability of the manifold N and not of the equilibrium point.
In some cases then the procedure must be repeated in order to find a new
al al (x) satisfying an equation of the type (17) which may be semi-
definite as long as there does not exist a point x xe 0 on
which * (xe) a* (xe) 0. In this case one not only obtains information
about the stability properties of the equilibrium point, but one is also
able to find some integral of the system. The same situation may arise
from (18) if (x) is a semidefinite function.

Equation (23) is very important in itself since its solutions are the so-
called isochrones of (1). The knowledge of the isochrones gives important.
information about the qualitative behavior of the solutions of (1).
REMARK 4.3. For some systems it may happen that the scalar function

(x) in (18) or t*(x) in (20) is identically zero. The scalar function
a a* (x) is then a first integral of the system.

$. A useful change of variables. The method for constructing Lyapunov
functions developed in the previous section contrasts strongly with the
methods in use up to now. The essence of our method is the introduction
of the functions (v) and O(v2) respectively in (18) and (23). The major
step is now to find a scalar function v v(x), v(O) 0, such that dv/dt
has the form 0(v) or (x)/ (v), but is otherwise completely arbitrary.

If we think of the problem of constructing a Lyapunov function by
solving a partial differential equation we see that the original linear partial
differential equation (2) (with unknown right hand side) has become a
quasi-linear partial differential equation (18) or (23) whose right hand
side has a certain well defined form.

In this paragraph we shall perform a particular transformation of
variables x z. One of the components of the next state vector z is the
scalar function v.
The aim of this transformation is to make full use of the very well

defined form of the right-hand sides of (18) and (23). The stability prob-
lem will then be reduced to a search for a scalar function (z), satis-
fying a certain nonlinear partial differential equation_ whose right-hand
side is any definite function which depends on only one particular com-
ponent of the vector z.

Consider the scalar equation

w v(x), v(o) o,
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which is equivalent to the equation

(31) V(x, w) (x) w 0.

Under certain very mild conditions which a v-function satisfies [6, 12],
we may solve this equation with respect to an arbitrary component of the
vector x, say xi. We obtain

(32) xi i(xl, xi-1, xi+l, xn, w).

Since we shall perform this operation only once in the whole procedure we
may as well simplify the notations. Let us introduce the n-vector z defined
as follows:

(33)

We may write (32) as

z x, k # i,

(34) x, i(z)

so that

(35) v(x, x_, f(z), x+,, x) w 0

from which

Ov Ov O,
Oxj Ox

(36)
Ov

1

and finally

(37)

(gx Ow

Ov 1
Ox Oi/Ovo

Ov O/Ox
Ox O/Ow

Now we are ready to perform the transformation of coordinates

(38) x := z: x (x)

on (18) and (23).
These equations take respectively the form

(39)
Ovo1
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and

(f(x) ’ 0* f(x)) O(w)0* i j.(40)

The problem of finding w v (,) is now reduced {o he integration of he
nonlinear partial dif-ferenial equations of he ’ype (ag) or (40), wih
he side condition (0) O.
We are in particular interested in (40) which can be written as

(41) (f(x) 0* ) 1

= fi(x) O(w) j 1.= Oi*/Ow

In this latter equation the usefulness of our method is much emphasized.
We can see that the only requirement we have is that the right-hand side

of (41) depends only on w2. If the function (w.), defined by (24) satisfies
(26), the problem of the stability of the solution x 0 of the system under
investigation is solved. If one cannot find a scalar function a (w) such that
a(w.)/O(w2) is bounded, then it is still possible to study the stability of
some first integral of the system, going through the origin.

In other words, whatever the function O(w.) is we shall always be able
to have some answer about the stability properties of the system.

Unfortunately the solution of the partial differential equation is not a,

simple matter and it is possible to integrate it explicitly only if it is possible
to integrate its characteristic system. A more reasonable approach is to
choose a suitable form for the unknown scalar function (x),
((0) 0, having a certain number of unknown coefficients, then compute
the unknown coefficients in such a way that the right-hand side of (41)
is a function which depends only on w.
The possibility of doing this depends of course on the right choice of

the form (*. Although numerous examples have been solved, no general
information about suitable forms for * is available.

6. Examples. In the ease of nonlinear systems, if one is not able to
integrate the characteristic system of the .equations (39) or (40), then an

alternative procedure is to look for a suitable form of the unknowns v v (z)
or (z, w) which allows a separation of variables.

Consider for example the system

2=y,
(42)

9 --ay axa- xy
for which

(43) v ax q-y
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and

(44) 01 --x2vl.
We see thut the solution y -ax is asymptotically stable. By integrating
it one obtuins x exp (--ta).
We conclude thut the equilibrium point x y 0 is asymptotically

stuble for a 0 und unstable for a 0. In this particular case we have
solved the stubility problem directly from (43) and (44). This is not
ulwuys the case.

Consider for example

(45)
8-- y,

Assume v ax y2; then 0 2y (1 v) from which no conclusion can
be drawn. Choose

a:>0.

then
b(x) 2y2(1 )2;

a(v) (s) ds (1 s) ds v -v,

y2a (x) (ax --1/2(ax- y),

&*(x) 2y(1 v)

from which we conclude that x y 0 is unstable.
In the next example we shall illustrate what is the advantage of (41)

with respect to the other formulations. Consider the system

y- x,
(46)

x- 1/2y

for which (41) takes the form

[ 0 ; 1 _0(w(47) Y ---- ( 1/2Y) O/Ow

Assume

(48) a(w + f(y))
for which (47) becomes

2_ ya(w + f(y))1/2 2w 2f(y) a
a

(49)

Of(y) (w "t- f(Y) )1/2
Oy

()

ax -t- ax:y Y Y,
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from which we may set

(50)

(51)

(52)

_f(v) + 1/2 of c.
Oy

2y3 a Of --0.

Intregating (51) we obtain

(53) f (y) ::i::y4,
and from (52)

(54) f (y) y and a2 1/2.

By substituting these results into (40) we obtain

(55) 1 (w +y)1/2

which may also be written in the usual form

(56) v 2x2- y4,
and we may check that

i O(w)v --2v.

We conclude that the solution 2x y4 is asymptotically stable.
Let us investigate this solution by integrating it. We obtain

(57) 1 t:x "+’2 + Xo.

We conclude that the solution x 0 of the (46) is unstable.

7. Conclusion. In the present work we have solved the general problem
of stability analysis of the equilibrium point of a control system represented
in (1).

This general problem has been reduced to the integration of partial
differential equations (23), (39), (18) or (41).
The closed-form integration of (23) or (30) presents, in the case of non-

linear systems, the same difficulties as the equations which arise from
otpimal control problems; hence in most of the cases numerical methods
must be applied. On the other hand, for equations of the form (18) and
(41) various examples with closed-form solutions have been found.
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ON CERTAIN QUESTIONS IN THE THEORY OF
OPTIMAL CONTROL*

A. F. FILIPPOVf

I. The existence of a solution of the optimal control problem within
the class of bounded, measurable functions. Given a system of n equa-
tions (in vector notation)

d()
d

f(’ x, u),

where x and f are n-dimensional vectors, and u u(t) is the control
parameter (an r-dimensional vector) which, for any given and x, can
take on values in a given set Q(t, x) (in [1] the case where Q depends
neither on nor on x is considered). The optimal control problem consists
of the following: for given x() and x*, find a function u(t) such that the
solution x(t) of (1), with u set equal to u(t), and initial condition
x (0) x(), attains the point x* in the least possible time, where, in addi-
tion, u (t) Q (t, x (t)).
We shall assume that the vector function f(t, x, u) is continuous in all

of the variables t, x, and u, is continuously differentiable with respect to
x, and that

(2) x.f (, x, u) __< c (] x + ),

for all and x, and all u f Q (t, x), where the dot denotes the scalar product,
and xl denotes the length of the vector x. Let Q(t, x) be closed and
bounded. When u describes Q(t, x), f(t, x, u) describes a set which we
shall denote by R(t, x). We shall assume that Q(t, x) is upper semicon-
tinuous (in and x) with respect to inclusion; i.e., that for any t, x and
> 0 there exists a 8 8(e, t, x) > 0 such that Q(t’, x’) is contained

in an e-neighborhood of Q (t, x) whenever It’ < ti and
Then., R (t, x) will have the same semicontinuity property (on account of
the continuity of f).
TgEOnEM 1. Suppose that the conditions stated above are satisfied, and

that the set R (t, x) is convex for every and x. Also suppose that there exists
at least one measurable function t(t) Q(t, 2(t) such that the solution

Originally published in Vestnik Moskov. Univ. Ser. Mat. Mech. Astr., 2 (1959)
pp. 25-32. Translated by L. W. Neustadt, Aerospace Corporation, E1 Segundo,
California.
From time to time the editors will include translations of important foreign

papers on control.
Chair of Differential Equations, Moscow State University, U.S.S.R.
An absolutely continuous vector function which satisfies (1) almost everywhere

will be called a solution. Under the assumptions we have made, such a solution exists
by a theorem of Carathodory [2, page 140].

76
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2(t) of (1), with u fi(t), and initial condition 2(0) x(), attains x*
for some t* O. Then there also exists an optimal control, i.e., a measurable
function u (t) Q (t, x (t)) for which the solution x (t) of (1), with initial
condition x (0) x(), attains x* in the least possible time.

Proof. It follows from (1) and (2), and the fact that x(0) x(), that

dX < 2CX,
dt

X(O) -ix()12 + 1 A

for almost all t, where X (t) Ix (t) + 1. Consequently, X (t) <-_ Ae
for >_- 0. Hence, for every admissible u (t), the solution of (1) with initial
condition x(0) x() satisfies the inequality Ix(t)] <= Ate ct* on the
interval 0 <= <-_ t* (if we consider that C >= 0).
We shall show that the Q(t, x) are uniformly bounded for 0 <= <= t*

and for Ix <= A1/2eC*; i.e., that there exists an N such that ul <__ N for
every u Q (t, x) for the indicated values of and x. Indeed, otherwise there
would be sequences tn -- t, xn - x, and un Q (tn, Xn) such that
But, by the assumptions we have made, Q(t,,, xn) is contained in an
e-neighborhood of the bounded set Q (t, x), for sufficiently large n. This con-
tradiction shows that the Q (t, x) are uniformly bounded for the indicated
values of and x. Since f is continuous, If(t, x, u) --< M if 0 _-< _-< t*, Ix
<= Aec*, u Q (t, x)
Now consider the set of all the solutions x(t) of (1) (for various

u (t) Q (t, x (t)) ), for which x (0) x () and x (t’) x*, 0 < t’ -_< t*. The
numbers t’ can differ for different solutions. Since one such solution exists
by hypothesis, this set is not empty. If this set is finite, the assertion of the
theorem is obvious. If it is infinite, we shall select a sequence from this
set such that the sequence of the corresponding t’ converges to ti--the
greatest lower bound of all such t’. The solutions of this sequence are
uniformly bounded for 0 <= <= t* since Ix (t) -<_ Atect*. These solutions
are also equicontinuous since they are absolutely continuous and
dx/dtl If(t, x, u) <= i lmost everywhere. Let us choose a uniformly

convergent subsequence xi(t), x2(t), from this sequence, and let us
denote the limit of this subsequence by x(t). We shall show that x(t)
is the solution which corresponds to an optimal control u (t).
Making use of the equicontinuity of the solutions xi (t), x2 (t), we

conclude that x(0) x() and x(tl) x*. In addition, there exists no
solution for which x(0) x() and x(t) x*, with 0 < < tl Further,
since all the x(t) satisfy a Lipschitz condition with the same constant M,
their limit x(t) satisfies the same condition. Hence, x(t) is absolutely
continuous, and dx (t) /dt <= M. Let

dx(t) dx(t)
dt

y(t),
dt

y(t), i 1,2, ....
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The functions y(t) and yi(t) are defined almost everywhere on [0, tl], are
measurable, and are bounded. Let t0 be a point of [0, ti] for which dx (to)/dt
exists. We shall show that then dx (to)/dt R (to, x (to)).
The set R (t, x) is upper semicontinuous (u.s.c.) with respect ,to inclusion.

Consequently, for any e > 0, there is a > 0 such that R(t, x) U
whenever to < ti and x x (to) < 2M/t, where U is a closed e-neigh-
borhood of R (to, x(to)). Making ti smaller, if necessary, we may suppose
that

(3) x(t) x(to)
to

whenever It tol < ti. But

x(t) x(to)
lim x(t) x(to)

t-- to -. t--to

Furthermore,

dx(to)
dt

y(T) drlimt t

1.im_. f0 y(to + (t to)s) ds.

y(r) dx(r)/dt f(r,x(-), u(r)) R(r, x(T))

for almost all r. For all sufficiently large i and ]r t01 < ti, we have

[x(t0) x(to) < M, xi(r) x(t0) < Mi.

Consequently, [xi(r) x(t0) < 2M. But then, from the previously
made estimates, R(T, x(r)) U. Thus, if It to[ < ti, and for all
sufficiently large i, the integrand in (4) is contained (for almost all s) in
U. Hence, the whole of the integral (4) is also contained in U (U being
a convex set). Consequently, the left-hand side in formula (4) is also
contained in U. Now it follows from (3) that dx(to)/dt is contained in
a 2e-neighborhood of R(to, x(to)). Since e is arbitrarily small and R is
closed,

dz(to) R(to, x(to)).
dt

Hence, there exists a u Q (to, x (to)) such that dx (to)/dt f(to, x (to), u).
Thus, for all for which the vector function x (t) has a derivative, i.e.,
for almost all t[0, tl], x(t) satisfies (1) where u(t) Q(t, x(t)). It follows
from the lemma proved below that u (t) can be considered to be measurable.
LEMMA. Let the vector function f(t, ul, ..., ur), or, more concisely,

f(t, u), be continuous; let the set Q(t) be closed, bounded, and u.s.c, with
respect to inclusion (in t); let the vector f (t, u) describe a set R (t) when the
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vector u (ul, ur) describes the set Q (t) and let y (t) be a measurable
vector function such that y(t) R(t). Then there exist measurable functions
ul (t), ..., u, (t) such that f (t, ul (t), ..., u, (t) =--- y (t) for almost all t.

Proof. For a given value yR(t), we shall always take that
u (u!, Ur), from among all the values of the vector uQ (t),which
satisfy the equation f(t, u) y, for which the coordinate ul has the
smallest value. If there is more than one such u, we shall take that .one
for which the coordinate us has the smallest value, etc. (the smallest
value exists since, on account of the continuity of the function f, the set
of values u which satisfy the equation f(t, u) y is closed). We shall
prove by induction that the functions u (t), ..., u(t) are measurable.
Let us suppose that u (t), Us_l (t) are measurable (if s 1, nothing
need be assumed), and let us prove that u8 (t) is measurable. There exists
a closed set E [0, t], of measure greater than tl e, such that the func-
tions y (t), u (t), ..., u_l (t) are continuous on E (this is a property of
measurable functions). Let us show that, for any number a, the set of
tE for which u, (t) =< a is closed. Suppose the contrary. Then there is a
sequence tE, n 1, 2, -.., such that

(5) tn -+ E, u (t) _-< u8 () , 1 > 0.

Since lug(t) <-_ const, for all i and t, a subsequence tn can be chosen
from the tn such that u(t,,) --,,_ t, for i 1, 2, .-., r. Since
u (tn) Q (tn), and Q (t) is closed and u.s.c, with respect to inclusion,
(, ..., ) Q(). It follows from (5) and the continuity on E
of the functions u(t), i 1, 2, s 1, that

u(), i 1, --.,s-- 1,
(6)

_<_ u(i) .
Pssing to the limit in the identity f(t, u(t), ..., Ur(t)) y(t) with
respect to the above chosen subsequence, and making use of the continuity
of the function f, we obtain

(7) f (i, u (i), ..., u_ (i), t, ..., t) y ().

By (6) and (7), u (i) is not the smallest value u8 which satisfies the equa-
tion

f(i, ul(i), ..., u,_(i), u,, -.., ur) y(i).

This contradicts the definition of u8 (t). Thus, our assumption is false, and
the set of tE for which u, (t) =< a is closed.

Hence, u, (t) is measurable on E. Since E [0, t], and the measure of
E is greater than tl e, where e is arbitrarily small, u, (t) is measurable
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on [0, t]. Hence, by induction, we conclude that all the u(t), i 1, r,
are measurable.

Note. In actual mechanical systems, of course, it is impossible to realize a
control described by a function u(t) if the function is merely measurable
without being piecewise continuous. In spite of this, Theorem 1 does not
lose interest since any measurable function u (t) can be approximated by
continuous function v (t) such that

(8) u(t) v(t) dt < ,
where is arbitrarily small. If, in (1), we replace the optimal control
u(t) by u continuous control v(t) which satisfies (8), then, by virtue of
the theorem [3] on the continuous dependence of u solution on a parameter,
the solution x (t), although it may not attain the given point x* at t,
will come arbitrarily close to x* if the number in (8) is made sufficiently
small. Thus, in many cases, one may even get along with continuous con-
trols.

II. Piecewise smoothness condition on the control functions u(t). Let
system (1) have the form

dx(9)
dt

g(t, x x,) + b,(t)u,(t), i 1, n,

where the g, Og/Ox, nd b, re continuous, nd the u,(t) must satisfy
the conditions

(10) [u(t) -<_ 1, s 1, r.

By Theorem 1, there exist measurable bounded functions u,(t) which
satisfy (10) for which the solution of system (9), with initial conditions
xi(O) Xo, i 1, ..., n, attains the point (x*, ..., x,*) the most
quickly of all. By [4], the functions u, (t) satisfy the "maximum principle",

(11) f(t, x, u).(t) max.,

where f (f, ..., f) is the complete right-hand side of (9) in vector
notation, k (, b.) is a solution of the system

Ob, Of b i 1, ..., n,
ot

and the maximum is taken with respect to all the u, which satisfy (10).
For the system (9), (10), the expression in (11) attains its maximum

If we assume that u(t)Q, where the set Q is connected, locMly connected, and
does not depend on or x, the function v(t) in formula (8) can be chosen in such
way that v(t)Q.
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when

(13) u,(t) sgn b, (t) . (t) s 1, ..., r,

where b (b,, ..., b,,). It is assumed that b.(t).k(t) 0 only for
values of which form set of measure zero. If the values of for which
b.(t) .(t) 0 have no point of accumulation, the function u.(t) in (13)
is piecewise continuous. Points of accumulation can only be those where
the relations b, (t). (t) 0 and d (b, (t). (t))/dt 0 hold simultaneously
(here we assume that db/dt is continuous). Hence, we can conclude that,
generally speaking, for the majority of solutions (t) of (12) such points
of accumulation will not exist, and, therefore, for the majority of optimal
trajectories x (t), the controls u, (t) will be piecewise continuous.

If the system is linear with analytic (in particular, constant, as in [5])
coefficients and b,, and if b,(t).p(t) O, then b,(t).p(t) can vanish only
t isolated points, and, consequently, an optimal control is piecewise
continuous. The verification of the conditions b, (t) "k (t) 0, s 1, r,
may be crried out relatively easily, since it suffices to verify if these
equalities hold in u neighborhood of the point 0.
Analogous results for linear systems have been obtained previously by

other methods by N. N. Krasovskii [6] and R. V. Gamkrelidze; the original
proof of Gamkrelidze’s [5, pp. 472-474] was replaced by proof due to
the author of this article.

III. The case where the optimal control is continuous. Suppose that
the conditions of section I are satisfied, and, in addition, that the set
R (t, x) is strictly convex and depends continuously on and x; i.e., for
every > 0, there exists a > 0 such that if tl t. < ti a.nd xl x. < i
then the distance from any point of R(t, x) to the set R(t, x) is less
than (for. i 1, j 2 ori 2, j 1). Suppose that to each value
vR (t, x) there corresponds only one u Q(t, x) for which f(t, x, u) v.
Then, the value of u at which the maximum in (11) is attained will de-
pend continuously on t.

Indeed, the maximum is attained at that u for which the point
f(t, x, u) vR(t, x) lies on the support plane to the set R(t, x) which
is perpendicular to the vector h. By virtue of the strict convexity of
R(t, x), this point v depends continuously on . Under the assumptions
we have made, u depends continuously on v. From this it is easy to show
that the optimal control u (t) is continuous.

IV. The general formulation of the optimal control problem. There is
given the system (1) in the notation of section I; a closed set A in the

That is, every support plane to this set has only one point in common with the
set.
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hyperplane to closed sets B and D in the half-space ->_ to and a
closed set Q(t, x), in the space of the u, which depends on and x. It is
required to find a point x0A and vector functions x(t) and u(t) which
satisfy (1) and the conditions x (to) x0, (t, x (t)) D, u (t) Q (t, x (t)),
(to -t- T, x (to q- T) B, such that the number T is minimal.
This formulation differs from the formulation of the problem in [1]

in that the set of admissible values of u, i.e., Q(t, x), may depend on
and x; that the solution x(t) must not leave the given region D, and
must get not from one point to another point in the shortest time, but
must get from one given set A onto another given set B.

If A is bounded and the conditions of section I are satisfied, then we
can make an assertion analogous to the assertion of Theorem 1 concerning
the existence of an optimal control within the class of bounded and mea-
surable functions. This can be proved in the same way as Theorem 1. It
is only necessary to add that the limit of a minimizing sequence of curves
x,(t) which belong to the closed region D is a curve which also belongs to
this region.
The formulation of the problem given above contains, as a special case,

the optimal control problems as formulated in [1], [5]-[7]. The formulation
of the problem of [1] has been given in section I. In [7] the requirement
that the solution x (t) should not leave a given region D was added.

In one of the problems described in [5], it is in addition required that
some of the control functions, e.g., u,+l(t), ..., ur(t), have derivatives
which are bounded by a given constant. Let us show that this case is also
included in the general statement of the problem given above. Let us add
the following r p equations to the given system (1)"

vs, s p q- 1, ,r.
dt

Now there are n -{- r p functions xl, x., u+l, ur in the
system, which are being sought. The last r p of these are subiect to
definite constraints (e.g., constraints of the form us(t) =< N, if such
were the constraints imposed on the u when they were considered to be
control parameters). Further, there are r control parameters ul, ...,
u,, v+, ..., Yr. The same constraints as before are imposed on the
first p of these. The last (r p) parameters must satisfy the constraints
vs(t) =< L, s p q- 1, ..., r. The initial conditions for the desired

functions will be as follows: xi(to) xi0, i 1, n; us(to) arbitrary,
s p W 1, r, so long as they satisfy the imposed constraints (e.g.,
us(to) <-- N). Thus, the set A (see the beginning of Section IV) is no

longer a point. The set B is similarly defined.
The problem in which there is imposed the additional requirement that
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the derivatives (up to any given order) of the u(t) must be bounded,
can be reduced by the same method to the formulation given at the be-
ginning of section IV.

In [6] constraints of the form
O"l-T

]2[u.(t) d -< C

are imposed on the control parameters. In this case, the functions

Zn+,(t) [U,()]: d, s 1, r,
to

can be added to the functions of system (1) as functions to be solved for.
Further, these additional functions are subject to the constraints
0 _-< xn+ (t) =< C and satisfy the equations

dxn+.(t) [u,(t)]., x,+,(to) O, s 1 r.
dt

The u (t) remain as control parameters, but they are now subject to no
constraints; i.e., Q(t, x) is the entire space. The set R (t, x) may also be
unbounded, but if it is closed, convex, and u.s.c, with respect to inclusion
(see section I), the proof given in section I on the existence of an optimal
control remains in force (with small changes). However, in this way, only
the square integrability of the functions u,(t) for which the control is
optimal can be proved. In [6] their continuity is proved by other means.

V. On sliding regimes. Let us show that an optimal control may not
exist if the set R(t, x) in Theorem 1 is not convex. Consider the problem

(14)

dx _y -!- u
dy

dt dt
u; lu(t) <= 1;

x(0) y(0) 0; x(T) 1, y(T) O, T > 0;

Since dx/dt -< 1, T >__ 1. It is easily seen that T > 1 for any solution of
system (14), and that any sequence of solutions for which un (t) 1
and Y, (t) <- 1In is a minimizing sequence since, for such a sequence,
x (t) I for I < t < 1 -t- 1/(n 1). Further, any minimizing sequence
converges to the functions x (t) t, y (t) 0 which are not a solution of
system (14) for any u(t). Thus, an optimal control does not exist here.

In cases similar to the one considered, it is said that the minimizing
sequence converges to a sliding regime, where the following meaning is
assigned to this. Consider the problem (14). In order to obtain a solution
for which the time T is arbitrarily near the minimum (but unattainable)
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value T 1, it is necessary that u(t) pass sufficiently often from values
near q-1 to values near --1. More precisely, let en -- 0 and n --+ 0, and,
for an arbitrary time interval of duration greater than t, let the fraction
of the values of for which u (t) 1 < e differ from 1/2 by less than
and let the same situation hold for ]un (t) q- 1 < e. Then, such a se-
quence u (t) is minimizing.
Both in the example we have considered and in the case of more general

equations of the form (1), sliding regimes arise from the nonconvexity of
R (t, x). It is clear from the proof of Theorem 1 that a sliding regime appears
when the vector dx(t)/dt does not belong to R(t, x) on some interval
a < < . Then, the vector belongs to the complement of R(t, x) with
respect to a convex set. Here, x(t) is the limit of the convergent sub-
sequence of the minimizing sequence, as in section I.
We note that in [8, p. 103] results similar to Theorem 1 of this paper

were obtained, but under somewhat different assumptions.
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ON THE NONLINEAR CONTROL PROBLEM WITH CONTROL
APPEARING LINEARLY*

H. HERMESf AND G. HAYNES

1. Introduction. The problem of optimal control can be viewed as follows"
given the system of ordinary differential equations

0 2 m(1) 2(t) F(t, x(t), u(t)), x(O) x i 1,

where 2i dxi/dt, choose the control vector u (Ul, Ur) from a
given class U to extremize a given functional, which may depend on the
control u, and the corresponding solution q of (1).

This paper is concerned with equations in which the control appears
linearly, i.e.,

(2) Fi(t, x, u) =-- gi(t, x) + hi(t, x)u

a sum being taken over the repeated index j. This form is particularly fruit-
ful in view of the existence results obtained by Markus and Lee in [10].
(See also [4] and [15].) For convenience the control set U is chosen to be
the set of vector valued functions u, defined by

U {u’[uj(t) <= 1, umeasurable, t [0, ), j 1,2, ,r}.

A control function is called a bang-bang control if it belongs to U and has
the additional property ui(t) 1 for j 1, 2, r, >-_ 0. Controls
that are not bang-bang will be referred to as intermediate controls.

In [6] LaSalle has shown that if

Fi(t, x, u) =-- a(t)xj -- bi(t)u

then the set of points q(t), for some >= 0 and u U, is equal to the set
of points (t) attainable by bang-bang control. Thus it can be concluded
that for the time optimal problem, it is always possible to do as well with
bang-bang control as with an arbitrary control, if the system is linear. It is
shown in section 2 of this paper that if F is of the form given in (2), then
the set of points q(t) with u a bang-bang control is dense (as a subset of
Euclidean n space) in the set of points (t) with u an arbitrary control.
This result by no means implies that it suffices to study bang-bang con-
trols only, since from a practical viewpoint, the number of switchiugs
necessary to approach optimality with a bang-bang system may far exceed
physical limitations.

* Received by the editors October 27, 1962.
The Martin Company, Denver, Colorado.
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The remainder of the paper considers the problem of synthesis of the
optimal control for a system of the form

2(t) A(x(t) + B.(x(t) )u(t)
(3)

2:(t) A:(x(t)) + B(x(t))u(t), x(O) x,

where x (x, x) and U u’{u(t)[ <-_ 1, u measurable on [0, )}.
The measure is always assumed to be Lebesgue measure. The problem is
to determine that u U which minimizes a functional of the form

t
L(x(r) dr

where t is the time a prescribed final state is attained. The results can
immediately be generalized to an integrand function of the form L(x)-- L(x)u. In particular if L -= 1, this is the time optimal problem.

In section 2, under the restriction that A(x) --B:(x)A(x)
z7 B(x)A.(x) 0 in some set together with other suitable restrictions,
it is possible to construct a set S E which is shown to be the region in
which solutions could exist. Because of the form of the equations (3) and
the functional to be minimized, this problem is particularly suited for
solution by the Green’s theorem approach; a method due to A. Miele [1.1].
By this method it is possible to obtain global conditions for optimality,
and thus, in special cases, to resolve the singular control problem (section
3.2) that can arise when the coefficient of the control appearing in the
Hamiltonian [8, Theorem 1] vanishes over some time interval of positive
measure. In section 3, the optimal strategy deducible from the Green’s
theorem approach is discussed. In particular it is shown that if one can
determine the optimal path in phase space, and this path can be realized
as a trajectory of the system (3) with a control u U, then the condition
A 0 along this path insures that u is unique to within a set of measure
zero. An example of a time optimal problem is then given in which the
optimal path requires an intermediate control, in fact u 0. The unique-
ness of this control yields the result that although u enters the equations
linearly, the optimal time cannot be attained via bang-bang control.

1. BANG-BANG CONTROL IN THE NON-LINEAR TIME OPTIMAL PROBLEM

In this section we consider the system of ordinary differential equations

(1.1) 2(t) g(t, x(t)) -- H(t, x(t) )u(t), x(O) x

where g(t, x) is an m-vector with components gi(t, x), u(t) is an r vector
with components ui(t), while H(t, x) is an m X r matrix with elements
denoted by hj(t, x).
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The set of admissible control functions U is defined by

U =- {u" [u-(t) 1, u. measurable on [0,),j--1,2,...,r}

while we define

U {u U" us(t) 1, j 1, 2, ..., r},

so that U is the set of bang-bang control functions.
Let R denote real m-dimensional space, and for y R define Y
i=1 Yi I. The following assumptions are imposed on the functions

and H appearing in (1.1) for i 1, 2,..-,re;j= 1, 2,.-. ,r;
i) gi(t, x), hij(t, x) satisfy a Lipschitz condition in x uniformly with re-

spect to t, of the form

(1.2)

ii) hij(t, x) <= M, and
iii) g(t, x), h,:(t, x) are measurable in for each fixed x.

For simplicity it is assumed that these conditions hold for (t, x) [0,
X Rm. With these assumptions the system (1.1) has a unique solution in
the extended sense (in the class of absolutely continuous functions) for
any u U, which is denoted .

Define, for some => O,

S(t) _--z {,p’(t)’u < U},

S(t) {q(t)’u U}.
Then S(t) is the set of points in R attainable from x at time with an
arbitrary control, while S(t) is the set of points in R which can be at-
tained with bang-bang control.
THEOnE 1.1. Ij’ for the system (1..1) the conditions (1.2) are satisfied,

then for every >- O, S is dense in S
Proof. Let u U and U. Then the corresponding solutions

and of (1.1) satisfy

(’(t) ,#a(t) i [(, ()) g(, ())1 d

[H(r, ,#U(r) H(r, oa(r) )]a(r) dr

+ fo H(r, ,#(r) )[u(r) a(r)] dr.

By using the Lipschitz continuity of g and H and the fact that .(t) 1,
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one can readily obtain

Pu(t) qa(t) <= mK(r + 1)
(.)

+ H(, ,())[() a()l &

I now suees o show ha for e > 0 and any given * and U, i is
possible o find a a Usueh ha

he procedure will be to show ha

())[u(r) ()] dl .(.4) H(,

With this shown, the required result follows from (1.3) by use of the Gron-
wM1 inequality.

For given t*, break the interval [0, t*] in n equal subintervals, each of
length . By Lemma 2, in the paper [6] of LaSalle, it follows that for any
1 j n, there exists a function such that

,(t)t 1, i 1, 2, -.., r, [(j 1),j]

and

f(’ H(r, o(r))[u(r) dr 0.

We define on the intervM (0, $*] by

,Z(t) ,Z(t), (j- 1), < j,j 1, 2,..., n.

Then foranyt (0, t*], (j-- 1) < jforsome 1 j hand

H(r, 9(r) )[u(r) (r)] dr

-)

-)

Now see he elements of H are bounded by M and he lenggh of ghe

interval [(j 1), ] is less ghan ,
H(r, (r) )[(r) a(r)l dr 2Mmr.
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By choosing e/2Mmr, or equivalently n 2t*Mmr/e, (1.3) yields

,#’*(t) g,(t)1[ <- e -t-- mK(r q- 1) o’*(r) (r)11 dr.

The Gronwall inequality can now be applied, giving

llq#(t) o(t)II exp {mK(r -I- 1)t}

for any [0, t*], which completes the proof.
From Theorem 1.1 it immediately follows that if R(x) is the attainable

set from x with bang-bang controls, i.e. R(x) U t>=oS(t), and R(x)
-=- U t>=0S(t) is the attainable set from x, then R(x) is dense in R(x). It
has been shown that for the problem (1.1) S(t) is dense in S(t) and it
might be conjectured that S(t) is equal to S(t). In particular, the con-
struction led to a control U such that not only was "(t*) q, (t*)
arbitrarily small for given u C U and t*, but q(t) (t)11 was small for
all 0 <-_ <= t*, which certainly is not a necessary restriction. However, using
the synthesis method described in sections 2 and 3 [in particular see
Theorem 3.1 and Example 3-7] we show that in some cases S(t) S(t).

It will be useful in what follows, to be able to approximate measurable
control functions with continuous controls. The required results are given in
THEOREM 1.2. If for the system (1.1), the conditions (1.2) are satisfied let

S(t*) =--{g,’(t*)’u < U}, t* >= 0

S (t*) {q," (t*)" u U, u continuous on [0, t*]}.
Then Sc(t*) is dense in S(t*). Further, if given any e > 0 and control u U,
there exists a continuous control t U such that

,#(t) -,,(t)ll < , 0 t*.

Proof. Since uj is measurable on [0, t*] for each j and u.(t)] -< 1, there
exists (see [12], p. 106), for any given it > O, a continuous function such
that .(t)l =< 1 and the measure of the set {t’u(t) 5(t)} is less than 6.
It follows that given u U, t* 0 and any e > O, there exists a continuous
control , (t) N 1, such that

H(, ())[() ()1 d <

for 0 t*. Using this and the Gronwall inequality in (1.3), the required
result is obrained.

2. THE TWO-DIMENSIONAL PROGRAM

2.1. Formulation of the problem. In the following sections the synthesis
for a two-dimensional system with control function appearing linearly is
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considered. The differential equations are taken to be of the form

(2.1) 2(t) A(x(t) -- u(t)B(x(t)

with the condition x (0) x, where

x A(x) A:(x) B(x)]X2

while u is a scalar valued control function. It is assumed that A, A:, B
and B: are once continuously differentible in an open, simply connected
set D R. The initiul point x and terminul point x will always be con-
sidered to be in D.
We define the set of admissible control functions U as

U {u" ]u(t) 1, umeasurable, [0, )},

and denote by (., x) the unique solution of (2.1), in the class of abso-
lutely continuous functions, for control u U, such that (0, x) x. No
distinction will be made between controls which differ only on a set of zero
measure.

In the development to follow, it will often be of interest to consider con-
stant control functions, in which case the system (2.1) is autonomous. To
emphasize the constant control, we will use " to designate the solution of
(2.1) for u(t) a,--1 a 1.

Also, since for any given u U, our interest is only in values of for
which (t, x) D, the notation T(u, x) will be used to denote the largest
interval of non-negative real numbers containing zero such that if

T(u, x), (t, x) D.
The problem considered is to find that u U, such that (t, x) x,

which minimizes the functional

x x) dC(u, x, L(u(,

where L is a given once continuously differentiable function in D, and t] is
the first time the given state x is attained. It has been shown by Markus
and Lee [10] that if for some u Uandsomet 0,(t,x) xf,then
there exists an optimal control. This result is a special case of a more general
existence theorem obtained independently in [13] and [4].

2.2. The attainable set for the problem (2.1). Before the synthesis of the
optimal control can be discussed, a study of the attainable set for the prob-
lem (2.1) is necessary.

Define

R(x) {x R "x (t,x) for some T(u,x) u U
R(x) {x R" x =(--t,x) for some T(u, xf),u U}
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where (-t, xs) is the solution of (2.1) with 2 replaced by -2. Thus
R(x) denotes the set of points which can be attained from x, while R(x)
denotes the set of points from which x can be attained.

Obviously, if a solution to the optimal control problem for (2.1) exists,
the segment of the trajectory connecting x to x must lie in R (x) R(x).
Also if R(x) R(xs) , the empty set, there is a control u U such
that an arc of the trajectory joins x and xs (i.e. existence). The remain-
der of this section will, therefore, be a discussion of this set.
Our goal will be to obtain sufficient conditions that the trajectories

1 ", x0), -1 ", x0), 1 ", x) and -1(., x) determine R (x) R (x). To
show the sense in which these trajectories may bound R(x) R(xJ) we
define for any y D, [a --< 1, the vector (, y) (A(y) - aBe(y),
A2(y) -- aBe(y)). Thus the possible directions which a solution trajectory
to (2.1) can assume at the point y are given by/(a, y)" [a] =< 1}.

Let

(2.2) A(y) ------- --B(y)A(y) + A(y)B(y).

Note that A(y) 0 implies y is not a critical point of (2.1) for any u =< 1.
Let 0(a, y) be the angle traced out by the ray (, y) as z varies con-

tinuously from -1 to a. The angle will be called positive if it is traced out
in a counterclockwise direction, and negative if in a clockwise direction.
LEMMA 2.1 If A(y) 0, the set {(a, y)" Is =< 1} of possible directions is

bounded by (-1, y) and (1, y) with 0 < 0(1, Y < .
Proof. For any --1 =< a =< 1, (a, y) lies on the line segment joining

(--1, y) and (1, y), since we can write (a, y) ((a -- 1)/2)(1, y)- ((1 a)/2)(-1, y).Thus(-1, y),(1, y) bound/(a, y)" [al =< 1}.
Letting (a, Y)I denote the length of the vector (a, y), the condition

A (y) 0 implies (a, y) 0 and that 1, y) and (a, y) cannot be
parallel for any-1 < a_-< 1, thus0 < 0(1, y)1 < .

In view of this lemma the directions (1, x) and (-1, x) bound the
set of possible directions at x, and the angle 0(1, x), which we may assume
for the sake of this discussion to be positive, is such that 0
The next lemma will show that i we were to observe the angle 0( 1, (t, x)
as increases from zero, the condition A(l(t, x0)) 0 will insure that the
sign of 0 will not change. Also A(-(t, x) 0 implies the invariance of
the sign of 0(1, -l(t, x)). Intuitively one would expect that all possible
trajectories are restricted to a wedge-shaped region bounded by -, x) and
1

X(., ). We will now proceed to show this.
LEMMA 2.2 Let "y (), o <= (r <= be a continuous curve in D along which

A (’ ()) 0; then sgn 0 1, , ()) is invariant along the curve.

Proof. Since 0(,(z) is a continuous function of z, if it changes sign there
would be a value z [z0, z] such that 0((zl)) 0. The assumption
A(/() 0 and Lemma 2.1 show that this cannot happen.
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DEFINITION. fl curve F, homeomorphic to (0, 1), will be said to properly
separate D if D F is the union of two non-empty, open (in D), disjoint,
sets H1 and H..
The following are some consequences of this definition. Since H1 and H2

are both open and closed relative to D F, the set D F admits the
partition HI lH2 and is disconnected. Now arcwise connected implies con-
nected, hence not connected implies not arcwise connected. Thus if F properly
separates D, D I is not arcwise connected.
We next show that F has no limit points in D. Indeed, suppose p is a limit

point of Fandp D. Then p H1 or p H assume p H1 Since H1
is open there is an e-neighborhood of p contained in H1. Then this neighbor-
hood contains points of F, a contradiction.
An immediate result of H1 and H being closed in D F is that

/-11 H1 (J F, I- H [J F, where/i denotes the closure of Hi in D. This
means that the frontier of H1 and H is contained in F.
One last result, needed in Lemma 2.3, is that every point of F is a frontier

point of both HI and H2. This will allow us to speak of the side of F in the
direction of H1. The proof of this is given in the appendix.

Define

F(X) Il(t, x)" T(], x0)} [.j I-l(t, o). T(-], x), > 0},

F(x) lo(-t,x) T(1, x)} [J I-l(--t, xI) T(--1, x), > 0}.

LEMMA 2.3. Assume F(x) properly separates D, forming the partition
HI lH. Let H1 be the side in the direction of (0, x). Then if A 0 along
F x) and y H y R(x)
The statement also holds if x is replaced throughout by x while (0, x) is

replaced by (0, x

Proof. The proof will be given for the statement concerning F(x),
(0, x), that for I (x), (0, x) following similarly.
Assume y R(x) and y H. Then there exists a u U such that

(0, x) x, (tl, x) y and (t, x) D for 0 _-< =< tl. Since
is open let N(y) be a neighborhood of y contained in H. Noting that D is
open, it follows from Theorem 1.2 that there exists a continuous control
function which will have an associated trajectory arc which initiates at
0 for 0, terminates within N(y) for tl, while the points of the
trajectory arc all lie in D for values of between 0 and t. This shows that
there is no loss in generality in assuming that u is continuous, which we
now do.

Since F(x) properly separates D, F(x) has no limit points in D and
there must exist a point p F(x) such that for some t => 0, (t, x) p
while (t, x) H for t =< t. We first consider t > 0. Assume without



NONLINEAR CONTROL WITH CONTROL APPEARING LINEARLY 93

loss of generality, that p (t, x). Since A(p) 0, there exists a
neighborhood N(p) of p, contained in D, such that

i) A(y) 0 for y N(p).
ii) [0(1, p) 0(1, Y)I < r/4 for y N(p). (This is assured by the

continuity of the right sides of (2.1).)
Let t4 > t and such that (t4, x) p N(p). Then p4 H.
Since the right sides of (2.1) are continuously differentiable with respect

to x, solutions are continuously differentiable with respect to initial condi-
tions. Thus there exists an orientation preserving continuously differentiable
homeomorphism which maps N(p) onto a neighborhood of the origin of a
rectangular coordinate system, such that @1(., X0) maps into the a axis of
this system; trajectories of the form el(., y), Y N(p), map into lines
parallel to the 1 axis; while the line perpendicular to e(., x) at p maps into
the a: axis. Let increasing correspond to increasing al, while points which
were in H. f’l N(p) map into points with positive a coordinate. (See Figure
1.)

Since it was assumed that (0, x) is in the direction of Hi and A 0
along F, ((0, p) is in the direction of H1. Now any point y N(p) can be
joined to p by a continuous curve along which A 0. Thus the homeo-
morphism has been constructed so that the image of any point e(a, y),
y N(p), e > 0, a -< 1, will be a point of the form (a, a) with 2 _-< 0.
This property characterizes allowable directions.
The image of the point q under the homeornophism will be denoted by _q.

Thus p maps into a point/5 having coordinates (d, ) with g > 0, while
{(t, x)’t <= <= t4} maps into an arc with a tangent defined at each
point, joining the origin of the a, 2 system to/54.

u(.,X)
Y-

Xo

FGURE. 1
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Join the origin to/ with the line segment g(t) tp 0 _-< _-< 1. Then
(t) can be represented as the couple (, ). By the mean value theorem,
there exists a t (t, t4) such that ((u(t), (t, x)) (t, x)

lc(g, ) where k > 0. But this is not an allowable direction, hence a
contradiction which completes the proof for t > 0.

If t 0, we consider a neighborhood N(x) of x, and extend (., x),
-1 0(-, for small negative values of t. This can be done since A(x) 0.

--1Let separate N(x) into H H4, while gives rise to H H. Assume
points which were in H are in H H.
Again let t4 > 0 be such that p (t4, x) N(x). If P4 Ha we can

use the previous argument with H replacing H1 and Ha replacing H:
--1throughout. If p H (H H), we consider as the separating tra-

jectory and proceed as before.
In order to assure the existence of solutions of (2.1) joining x to xz, the

following condition is imposed.
CONDITION 2.1. Either r(x) or r(xf) properly separates D, and there

exist t., t, t, t > 0 such that
i) l(t, X) -(--t2,xf).
ii) -(tl, X0) 1(--t4, If).

--1iii The rajeeory ares (, 0, 0 < < ; (, 0, 0 ;
-1( , 0 < < ; (--,),0 ,alllieinD.

iv ( 0 for in he se () or () which properly separates D.
A problem will be said o satisfy Condition .1 if is associated (., o),

--1 1 1 X
f(., x), (., x) and (., satisfy the codition.

REMARKS.
1. If the values t, t, t and t exist, they are unique.
2. It is possible that 1(, x0) xf, [-1(, x0) x] for some 0, and

that the problem satisfies Condition 2.1 with t, t, t, t > 0 replaced by
t, t:, t, t 0. Then since A 0 along the arc of (., x), [-1(., x0)],
connecting x to x, it is the only allowable trajectory arc connecting these
points. In this event the problem is trivia], so it will be omitted from further
consideration.

3. This condition is sufficient for existence, but certainly not necessary.
DEFINITION. Assuming Condition 2.1, S will denote the compact simply

connected subset of D bounded by the arcs of 1(., x0), -1(., x0), (., x)
and -(., x).
The following theorem now gives the desired characterization of

R(x) R(x), in terms of the trajectories thru x and x with controls 1
and 1.
THEOREM 2.1. If a problem satisfies Condition 2.1, and A(y) 0 for

y S, then S R(x) R(xX).
Proof. a) Assume y S. It will be shown that y R(x) R(xf). It suf-

fices to consider y S interior, for if y belongs to the boundary of S, the
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result is immediate. It must be shown that there exists a control u U and
tl _-> 0 such that (tl, x) y; and a control U and t2 => 0 such that
(--t,x) y.
Now S is a simply connected, compact subset of D with no critical points.

It follows that every semiorbit which initiates within S must leave this set
in finite time. Thus the semiorbit pl(--t, y), >= O, must intersect the
boundary of S, and do so along the arc of -l(t, x) which contributes to the
boundary. (This is easily verified by observing that 1(_ t, y) cannot inter-
sect l(t, x) or 1(- t, xx) by the uniqueness property, while if it intersects

(--t,) a contradiction to Lemma 2.2 occurs.) Assume that the inter-
section occurs at the point of the boundary of S, and that 1( t3, y) 2
while -(t4, X) 4. Then

for0 _-< =< t4u(t) =[l fort4 < =< t3-t4
is an allowable control such that (t3 -- t4, x) y.

Similarly construct (t, y), _-> 0. This must intersect -1(--t, x) and
the control is easily constructed.
Thus y S -- y R(x) fq R(x).
b) Assume y R (x) fq R (x) but y S. A contradiction will be shown.

We consider the case where I’(x) properly separates D, the proof being
similar with I (x).

Let F(x) give rise to the partition H1 H., and assume, without loss of
generality, that the interior of S is in H. Let t, t, t3 and t4 be as in Condi-
tion 2.1. Then either

i) yH,
ii) yH1-- S,
iii) y (t, x) for some To(l, x), > t, or

--1y = (t,x) for somet To(--1, x),t --> t3.
We consider these cases in order.
By Lemma 2.3, y R(x) f’l R(x) y ((: H

FIGURE 2.
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Next consider H as our new domain. Then

F(x:) {x(-1, x:)’O _-< < t4} [J {-(--t, x:) :O < < t}

properly separates H, forming a partition Ha H. Since A(y) : 0 for
y S, A (x) 0 for x F (x:). Assume, without loss of generality that
the interior of S is in Ha. Then by Lemma 2.3, y R(x) f’l R(x:)

y $ H4 H1- S.
This leaves only iii) above, which is quickly ruled out since the condition

A (x) - 0 for x l(x) implies that the intersections of el(., x), -(., x),
(., x/) and e-(., xf) are unique, and cannot reoccur for values of > t
ort > t.
Thus y R (x) R(x) y S, which completes the proof.

3. SYNTHESS OF TH OWM CONTUOL FOa Wn

WWO-DMENSONXL UOLM

3.1. Synthesis by Green’s theorem. Let A(x) 0 for x R(x)
R(x) S, (assuming S is defined). Then for a given trajectory arc
connecting two points P0 and P1 S, the functional C (see Section 2.1)

can be expressed as a line integral along this arc.

f tP1 fpP1LB2 LB1(3.1) C u, Po P L dt dx + dx2

Suppose = and are two derent solutions to (2.1), each joining P0 to
P in S, and having no points other than P0 and P in common. Let F be the
closed curve formed by these trajectory arcs. If we traverse F in a counter-
clockwise fashion by following first he arc of from P0 to P and next the
arc of 2 from P to P0, then

(3.2) C(u Po P)- C(u Po P)= - LB2 dxl + LBx dz2
A A

Since the bounding curve is a Jordan Curve, applying Green’s theorem
to (3.2), which is permissible by virtue of A, B, A2 B2, L CI(s), the
class of once continuously differentiable functions, the following result is
obtained"

(3.3) C(Ul, Po, P) C(u., Po, P1) ff ’w(x) dS

where

(3.4) (x) + x
and 6 is the region enclosed by P.
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Since w(x) is uniquely determined for all x S, (3.3) provides a direct
means for determining the optimal strategy.

3.2. Relationship between 0 0 and the singular problem. The con-
trol problem (2.1) is said to be singular when the coefficient of u (see (3.5))
appearing in the Hamiltonian function vanishes over some time interval
of positive measure. In this case the principle of the maximum, or its classi-
cal counterpart condition II of Weierstrass, fails to yield any information
regarding the optimal control. The vanishing of the coefficient of u cn be
used to determine the intermediate nature of the singular control [7];
however, there are no criteria available that determine when intermediate
control should be abandoned in fvor of a bang-bang control und con-
versely. The control problem (2.1) is singular when

(3.5) p(t)B((t) + p(t)B:((t) 0

for some subset of positive measure of the interval t0 tx, where p is
the costate vector whose elements are determined by the differentiM equa-
tions

(.6)

Ox- kox + p+
(For convenience (t, x) is denoted (t).)
From [2] the Hamiltonian is a constant, and the constant is zero so that

L((t) p(t)A((t) p(t)A((t)
(3.7)

[p(t)Bi((t) + p(t)B((t) )]u(t) 0.

This result is equivalent to the first integral of the calculus of variations [1],
with the constant of itegration zero, by virtue of the transverlity condi-
tion and the boundary conditions.
Then from (3.5)

d

0

using (2.1), (3.5), (3.6), (3.7) and recalling the definitions of A, (2.2),
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and 0, (3.4), this can be reduced to

d(3.8) Ipl(t)Bl(pU(t)) - p.(t)B.(pu(t)} A(u(t))o((t)) 0.

Since A(x) 0 for all x S, (3.8) establishes a relationship between the
singular control problem and ((t)) 0. Thus, on arcs for which the
optimal control need not be bang-bang, 0.

Several comments can be made concerning the reverse implication, i.e.,
does ((t)) 0 implyp(t)B((t)) + p(t)B((t)) 0? Again we
assume A 0.

a) If 0 along an optimal path obtained with an intermediate control
([ u(t)[ < 1) then pBt pB 0 along this path, since the necessary
condition (the maximum principle) would otherwise require that
u(t)[ 1.
b) The condition ((t)) 0 implies

d

where

Thus if pB + pB is ero ag any poing of ghe are, ig remains ero.
e) If 0 is an are which ingerseegs an opgimal grajeegory and is allow-

able (i.e., ghere exisgs a U such ghag ghe solugion of (2.1) follows ghis

are) in some neighborhood of ghe poing of ingerseegion, ghen ghe problem
is singular, i.e., p and can be ehosen inigially so as go assure IB
+ pB 0 ag ghe poing of ingerseegion. In view of eommeng b), pB
+ pB remains ero.

8.8. gniqueness of the intermediate control. he synghesis procedure
will be go degermine ghe opgimal pagh" in ghe phase space, and ghen deger-

mine, if possible, a eongrol from U, which leads go a solugion of (2.1) wigh

a graeegory are which coincides wigh ghe opgimal pagh".
heorem a.1, which follows, will show ghag if one ean degermine a piece-

ie conio control from U, such ghag ghe eorresponding solugion are of
(2.1) coincides wih ghe "opgimal agh", ghen ghis eongrol is unique (up go
a seg of measure ero). Ig will be found ghag go obgain a eonsgruegive

meghod go degermine ghis eongrol, one needs , A1, B, A, B gO be ag
leas wiee eonginuously differengiable.

An example (a-7) will be given of a gime opgimal problem of ghe form
(2.1) which leads go an "opgimal pagh" which is obgained as a grajeegory
are of a solugion of (2.1) wih a eonginuous eongrol u sueh ghag () < 1
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for all t. Theorem 3.1 then shows that there can be no bang-bang control
which leads to a trajectory coinciding with the optimal path, thus the re-
mark following Theorem 1.1, that S(t) need not equal S(t), beomes evi-
dent.
THEOREM 3.1. If "(t) and q(s) are two solutions of the system (2.1) join-

ing two points a and b of a simply connected subset D c E2, such that
i) u C[0, t], t > 0,
ii) (0) a, (0) a,
iii) U(tl) b, (sl) b,
iv) {qu(t)’0 =< _-< ti} {(8)’0 8 81} A C D
v) A(y) 0fory D,

then tl sl and t u, where we shall use to denote equal except on a set
of measure zero.

Proof. The restriction v), implies that the trajectory u does not cross
itself, i.e., there are no values and such that 0 <= , -< tl, ,and
() (). Indeed, if this were the case, A 0 in the loop created,
hence constructing ql(t, y) for y interior to this loop leads to a contradiction
of Lemma 2.2.
Then in view of condition iv), there exists a continuous, monotone func-

tion f defined on the interval [0, s] by

(3.9) q(f(s) =---- (s)

such that f(0) 0 and f(sl) t.
It will next be shown that f is absolutely continuous. To show this, it

should be noted that there exist m, t > 0 such that

(3.10) m It --< (t) () 27 :(t) (i)l

for [t ] < ti; t, [0, t].
Indeed, ssume that this statement is false. Let m 1/2 min0_<_<tl [I l(t)l- .(t)I], and let ti -- 0, ti > 0. Then for each there exists t, [0, tl]

such that t ti and

m > +
Because of the compactness of [0, tl], there exist convergent subsequences
tl and i} of t}, ,} and they must have the same limit, say to. But then

lim l(t) ()l--Iu(t) ()i <_ m

and this contradicts the definition of m.

If the optimal control is defined over [0, t]], the interval [0, t] can be assumed to
to represent an arbitrary subinterval over which u is continuous.
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Assume now that f(s) is not absolutely continuous on [0, s.]. A contra-
diction will be shown.
f not absolutely continuous implies there exists an e > 0 and a sequence of

mutually separate intervals [ak(v), 5k(v)], lc 1, 2, n() < , such
that

i) each interval is contained in [0, 81],

(3.11) ii) k.=lE [a()-()I--0as--+,
n(v)

iii) I(()) -((,)) > or.

Choose large enough so that or each k and v >_- ,
From (3.10) one obtains for every/ and _->

m I](c()) f(())[ _<- o(f(a())

+ -:(A())) #(f((,)))l (-()) (())[

Then from (3.11)
n(v)

< E If(()) f(())l

for all v >= . In view of (3.11), this is a contradiction to the absolute con-
tinuity of a on the interval [0, s]. This contradiction shows that f is ab-
solutely continuous.
By assumption

(3.12) (t) A(o(t) q- B(o(t) )u(t),

Also, since C1[0, tl] and f is absolutely continuous,

i= 1,2.

(3.13) d-d- o’*(f(s) (o’*(f(s) )f’ (s).
ds

Now, in (3.12), substituting f(s) for and multiplying both sides of the
identities by f’ (s) yields

oi (f(s)f’ (s) [Ai(o (f(s) -+- (o (f(s) )u(f(s) )]f’ (s) i 1, 2,
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or in view of (3.9) and (3.13)

(3.14) (s) [Ai((s)) -- B((s))u(f(s))]f’(s), i 1, 2,

But

(3.15) i(s) A((s) + B((s) )(t(s), i 1, 2.

(It is only required that fi U.)
Equating the right sides of (3.14), (3.15) yields

A((s)) B((s)) f’(s)u(f(s))

which implies f’(s) 1, u(f(s)) (s). But f is bsolutely continuous.
f(0) 0, hence s t nd u(s) (s).

3.4. Optimal strategy. The dvntge of the Green’s theorem pproch
is that the relative optimMity of two distinct pths cn be obtained directly.
It my be observed from (3.3) that if

0 in , then C(u, Po, P) C(u, Po, P) O.
The optimM strategy for the control problem considered is in some cses

quite obvious, and be simply determined by inspection of the behavior of
(x) in R(x) R(x). However, there re instances where this procedure
fils, nd presumably definite integration of (3.3) is required for the
determination of the optimal strategy. The purpose of this section is to
list only those cses where the optimal strategy is deducible directly from
the behavior of (x) for ll x R(x) fi R(x).With regard to the behavior
of (x) the following subsets are defined.

+ {x R(x) R(x) :(x) > 0}
.7

_
x R(x) R(x) :w(x) < 0}

o {x R(z) R(x) :(x) 0}
Cs 1. 0 R(x) R(x).
If o R(x) R(x), and the interior of R(x) R(xf) is ssumed to

be non-empty, then the control problem is degenerate. The value of the
cost functional is by (3.3) independent of the pth tken in R(x) R(x),
nd hence independent of control.
EXAMPLE 3-]. Given

(3.s)
x xu
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tPIGURE 3.

with u =< 1. Let x (1, 0), xy (3, 0) so that S is bounded, and the
boundary of S is illustrated on Figure 3. Consider a time optimal problem
so that L 1; then co(x) 0 for all x S. An integral of (3.18) with initial
condition x when 0 is

2t(3.19) x_ --x. e

so that the transit time is independent of control. Since A(x) 0 on x2

=t=xl, which do not intersect S, and all motions from x lie in the quarter
plane of points with positive first coordinate and bounded by the lines
xl 4-x2, Theorem 2.1 applies with the trajectories properly separating
the quarter plane. Thus R(x) fl R(x) S, so that there exists more than
one control u U for which the solution to (3.18) satisfies the boundary
conditions. Hence, in view of this fact and (3.19) there is no unique time
optimum to this problem.
CASE 2. Either co+ Zf or co_ and coo is the union of a finite number

of arcs and points in R(x) fl R(x’)
If co(x) has a constant sign except on a finite number of arcs and points

were co(x) 0, in R(x) I"l R(x), then the optimum control path lies in
the boundary of R(x) Cl R(xX). This follows directly from (3.3) when com-
paring any interior path to a boundary path of R(x) fl R(x). The ap-
propriate branch of the boundary that contains the optimum control path
is determined by the sign of co(x).
EXAMPLE 3-2. As an example where co(x) was a constant sign everywhere

in R(x) I"l R(x’), consider (3.18) and the boundary conditions of Ex-
ample 3-1, withL Xl -t- x.. Then co 1/(x2 Xl) and co_ R(x)
fl R(x’), so that the optimal control path is the lower boundary of R(x)
Cl R(x) shown in Figure 3.
EXAMPLE 3-3. For the case where coo has a finite number of elements,

let L -4x -t- xlx, - 4 log (xl -t- x.) together with (3.18) and the
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X2

-I-

bx=-2b=O

XI

FIGURE 4.

boundary conditions of Example 3-1. Then

)-x (x- 2
Xl X22

and + ;, and 0 has a single element (2, 0). As in Example 3-2 the
optimum control path is the lower boundary of R(x) f’l R(x).
EXAMPLE 3-4. For the case where 0 is no more than a finite number of

curves in R(x) 0 R(x), let

L x + ? (-+ x.
2

452 log (xl + x,,.) (52 1) (xl, x.2) log (xl + x2)
2

where b is some constant, while (3.18) and the boundary conditions of
Example 3-1 apply. Then

--{x2 + bxl- 2b}
Xl X22

so that + , and 0 is the intersection of R(x) f’l R(x) s shown in
Figure 4 and is identical with the optimum control paths for Example 3-2
and 3-3. At this stage there is an important point to be stressed. As shown in
section 3.2, if there is an allowable arc long which o =- 0, the problem may
be singular. If in Example 3-4 the constant b were chosen in the rnge

-1 _<_b_< 1

then there is a control u U for which the solution to (3.18) satisfies
(3.20), so that an intermediate control is not ruled out by minimizing the
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X2

... Xz.+ bx -?_b=O

o
c,o Ibl-I

FGURE 5.

Hamiltonian. However, by using the Green’s theorem pproach this pos-
sibility has been ruled out, ad it has been shown that the optimum control
is bang-bang.
CASE 3. o+ and o_ are both non-empty and o0 is at most a finite number

of curves in R(x) R(x).
In this case (x) is not of constant sign in R(x) gl R(x’). It is only in

some instances that it is possible to find the optimal strategy directly. No
purpose is served by enumerating the conditions when this is possible, since
given specific example it becomes a relatively simple task to see if this is
the case.
EXAMPLE 3-5. Consider (3.18) and the boundary conditions of Ex-

ample 3-1. Let

L= x + bx 2b log (x + x)

where b is some constant, then

-x- bx 2b
Xl X22

If b =< 1 then there is a solution to (3.18) with u U that satisfies
0 0, i.e.,

x + bx 2b 0

over some interval of positive length. In this problem the intermediate
control is part of the optimal strategy, as illustrated on Figure 5. If b 1.
then u 1 for the arc of the solution trajectory coinciding with 0,
which illustrates the point that situations can arise where the control
problem is singular but is still bang-bang. (See comment c given in section
3.2.) If b > 1, there is no u U which yields an rc of a solution tra-

See comments given in section 3.2.
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Xl: iX,-l- bx-2b =0

FGURE 6.

X

FGURE 7.

jectory coinciding with o 0, and the optimum control is bang-bang. The
optimal control path has three sub-arcs, but to obtain the exact location of
the second sub-arc (Figure 6) presumably requires integration of (3.3).
EXAMPLE 3-6. Consider (3.18) and the boundary conditions of Example

3-1 with

so that

L 4x -t- xlx2 -t" - log (Xl -t- X2)

)2x (x- 2
Xl X2

On the upper and lower quadrants of the circle shown on Figure 7, there
is some u U for which an arc of the solution trajectory of (3.18) satisfies
o 0, that is

x +(x-2) =.
On the other two quadrants there is no u U for which the solution to (3.18)
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A0

-I

=_0 X

=0

F(:uan 8.

satisfies co 0. In this case the optimal strategy cannot be resolved directly.
Paths that give possible relative minima are sketched on Figure 7.
EXAMPLE 3-7. This will be an example of a time optimal problem that is

singular, and which illustrates, in view of Theorem 3.1, that it is not pos-
sible to do as well with a bang-bang control as with an intermediate control.

Consider

(3.21.)
I Xl Xl X2U

with boundary conditions x [1, 0], x [2, 0]. The solutions to (3.20)
with control u 1 and u -1. are

( 1

l(--t,x) --1/2 -t-" e t,
e -t- 1

(t,x)
e--t- 1

[ 1

< (-t, )=
et- 1.

and h, t., ta and t4 exist. R(x) Cl R(xf) is illustrated on Figure 8, and A
x[x 1] 0forx R(x) R(xf).Forthisproblem

.(z)

Since co(x) 0 when x 0, tile optimal control is u --- 0.
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APPENDIX
We wish to show that if F properly separates D, every point of F is

frontier point of H gnd H..
Every point of F is frontier point of either Hx or H, so ssume F to be

pmmetrized as F(t), (0, 1) nd F(t0) p0 is not frontier point of Hx.
Thus there is neighborhood n(po) such that n(po) F H. We look
for contradiction.

Let y be ny point in HI Join p0 to y with simple rc C in D, see Figure
9. Since points in n(po) F belong to H while y Hx, there is frontier
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FIGURE 9.

point of H1 and H2 along C. Then this point is on F, since all frontier points
of H1 and H. are on F. Also, since F has no limit points in D, there must
be a point pl C such that F (t) p (assume t > t0) while F (t) ( C for
> t. Then every neighborhood of pl contains points of H, or else there

would again be a frontier point of H1 and H on C between p and y, which
would be a point of F.

Let F F(t)’t0 =< =< ti/. Take any simply connected open set D in
D, which contains I’ in its interior, and has a simple closed curve in D as a
frontier. Let DI denote the closure of DI and ffD1 denote its frontier.

Define t2 as the largest value of < to such that F(t:) ffDl t3 as the
smallest value of -< to such that F (t) ffD t4 such that F (t) D1 for
< t4 while t5 is such that F(t) D for > ts. (See Figure 9.)
Let E. be the set whose frontier is made up of arcs of 9:D1 and arcs of

{F (t)’t <= t2 or t3} by using the subarcs of the latter whenever they lie
within D. It is easily verified that D is a simply connected domain, and
F2 F (t)" t. _--< _-< t} is a cross cut. Thus (Chapter V, Theorem 11.7
[13]) D I’ has two components, and F is contained in the frontier of
both. Now since neighborhoods of p contain points of H, while there is a
neighborhood n(po) such that n(po) F contains only points of H2, it
follows that there must be a point of H and a point of H in the same com-
ponent of D2 F. Connect these with a simple arc in that component.
This arc must contain a frontier point of H, hence a point of F, which is a
contradiction.
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AN OPERATOR THEORETIC FORMULATION OF A CLASS OF
CONTROL PROBLEMS AND A STEEPEST DESCENT

METHOD OF SOLUTION*

A. V. BALAKRISHNAN]"

1. Introduction. In this paper we examine a class of control problems
in the context of abstract functional analysis. The formulation and method
of solution are succinct in form and concept and very general in scope.
The class of problems includes the linear final value control problems
[1, 2] as well as a more general class. In the former we seek to minimize the
Euclidean distance

x0 x(T) ii,

where x0 is the desired (finite-dimensional) position vector (or point in
phase space) and x(T) is the actual response upon using a control u(t)"

x(T) ] W( T, s)u(s) ds,
d

and the optimization problem is to choose the appropriate u(t) from
given class. A more general class of problems is that of minimizing the
integral square error

fo fo W(t, s)u(s) ds dt

where g(t) is the desired response and

T

is the actual response using the control u(t) and u(t) is again subject to
constraint. For the case of an energy constraint, we also present a compu-
tational algorithm which in sufficiently many steps will approximate as
close to the optimum as required. This algorithm is based on the method
of steepest descent in a Hilbert space. We shall present some numerical
computer results employing the methods advocated in this paper in the
near future.

2. Abstract formulation of the optimization problem. We begin by formu-
lating the final value control problem in the context of linear operators
over a Hilbert space. In a large number of cases the control system can be

* Received by the editors March 9, 1962 and in revised form November 1, 1962.
Department of Engineering, University of California, Los Angeles, California.
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characterized by the dynamical equations

(2..1) -t x(t) A(t)x(t) + B()u(t),

where for each t,
x(t) is a p-dimensional (column) vector or p X 1. mutrix,
A(t) is a p X p matrix,
B(t) is a p X q matrix, and
u(t) is a q-dimensional (column) vector (or q X 1 matrix) specified

usually to be in some closed convex subset of the Euclidean
q-space.

For any rectangular matrix 214 we shall define the norm, denoted M II, by
i]M 12 traceM M,

the star denoting the conjugate transpose. Given a preassigned vector x in
the Euclidean p-space, the control problem that concerns us is that of
choosing
to minimize

assuming A (t), B(t) continuous and

we may without loss of generality assume x(0) 0. The point of departure
for us is that from (2.1) we know first that there is a p X q matrix W(t, s),
0 =< t, s -<- 7’ such that

(2.2) x(T) f W(T, s)u(s) ds,, i

where

A being the interval [0, T].
If we denote by H the Hilbert (L) function space of Lebesgue measurable

q-dimensional complex-valued functions square integrable over A, with
inner product of any two functions f(t), g(t) in L defined by



CONTtOL PROBLEMS AND STEEPEST DESCENT 111

than we can define a linear operator on H by

(2.3a) Lu W( T, ds

which maps H into the unitary (Hilbert) space E of dimension p. By virtue
of (2.3), L is a linear bounded transformation. We can then phrase the
control problem at hand as follows:
Given any x is E, minimize the distance

where u is restricted o be in closed convex set C in H. Let i be noed
h his is more general thn (2.1.) sinee we en consider ny linear system,
not merely those described by differentiM equations, nd ll we require is
the function W(t, ) which need not even be continuous. Also, letting the
control functions be in C is in sense more generM hn requiring that
the function be in convex set t eeh point, nd in prieulr i is no
required that the control functions be pieeewise continuous.

For (2.4) we en establish he following existence theorems bsed on
standard results in Hilber spree theory.
THEOREM 2.1.. For each x in E, there is a unique dement z in the closure of

L( C) such that

inf Lu z x
u6.C

Proof. We give a proof which is independent of the finite dimensionality
of Ev and hence includes the general ease where L maps H into another
Hilbert spaee. The proof is based on the following well-known lemma:
LEMMA 2.1. Every closed convex set in a Hilbert space has a unique element

of ninimal norm.

Proof. For a proof see [3].
To prove Theorem 2.1 we have only to note that the set, denoted L(C),

consisting of all elements of the form Lu, u C, is convex, md hence so is
the set of all elements of the form

Lu- x, u C.

Since the strong closure of this set is still convex, Lemma 2.1 applies and,
in particular, shows that there is a sequence {u,.} of elements in C such that
the sequence Lu converges to a unique element z in the closure of L(C) and

i.fllL- ll iml[L- zll II-
uC

We note that L takes bounded sets in H into bounded sets in E,, and
since the closure of a bounded set in E is compact, L has the property
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that it mps bounded sets in H into conditionally compact sets in E. A
linear bounded transformation of one Hilbert spce into nother which hs
this property is called "compact" or "completely continuous". Using this
we have
THEOREM 2.2. Let C be any closed bounded convex set in H. Then there is

a unique element uo of minimal norm in C such that

(2.6) inf Lu x Luo x {I.

Proof. Let {u.} be a sequence of elements in C such that

lira Lu. x inf Lu x II.
u

We recall [3] that the unit sphere in H is weakly compact, so that every
bounded sequence contains a weakly convergent subsequence. Hence
there is an element v in H such that a subsequence {u} converges weakly
to v. But since L is compact, we know [3] also that Lu converges strongly
to Lv. Then

inf Lu x x If,
u.C

and since C is convex, Lv by Theorem 2.1 is unique. Since C is convex and
closed, we also have the deeper result [3] that v itself must belong to C.
Next consider the class of elements u in C such that

Lu Lv.

This is a closed convex set, and by Lemma 2.1 must contain a unique ele-
ment of minimal norm. This is the elenent u0 sought in the theorem.
The main problem is of course that of finding he element u0 or an ap-

proximating sequence. We shall describe such a method for the ease where
C is aet,ually a sphere. In order to do so, however, we shall need a few more
general results.

Let L* be the adjoint of L, so that L* maps g’ into H:

L*x U

where the function u is defined by

u( t) W( T, t) *x, O<_t<_T.

Then L*L is a linear bounded transformation defined on H, mapping H
into H a,nd similarly, LL* is a linear bounded transformation mapping E,
into Ev. Also, both LL* and L*L are compact and ha,re the same non-zero
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eigenvalues. Moreover, for each x in E,

LL*x w(7,, t) W(T, t)*x dt

where A is the p p m.atrix

A t)*

which is self-adjoint ("Hermitian") and non-negative definite.
Let {h}, i 1, m p; k h... h,, be the non-zero (and

hence positive) eigenvalues of A and let the e, be the corresponding ortho-
normalized eigenvectors. Then denoting by [, the inner product and by

the .om i. both H a.d ’, we

L*e

are orthonormalized eigenvcctors for L’L, since

L*LL*e L*eL*L 1/ / hii.

Also for each u in H, we have

(2.s) Lu

L*x Ix, e,,:]L*ei.

It can also be shown that

Again since H is infinite dimensional and E is finite dimensional, zero is
always an eigenvalue of L. On the other hand, zero is not necessarily an
eigenvalue of L*, since for this we must have

(2.9) W(T, t)*x 0

for almost every in A and some x 0.
Again,

uH



114: A.V. ]3ALAKRISHNAN

for some x in Ep if and only if zero is an eigenvalue of L*. For, if

L*x O,

then for every u in H

[u, L*x] [Lu, x] O,

so that the range of L is properly contained in E. And conversely, if the
range of L is properly contained in E, then there is a non-zero x such that

[Lu, x] O,

for every u in H, so that

implying that

[u, L*z] 0,

(2.10) L*x O.

It should perhaps be noted that (2.10) implies that

infllLu-- kx > 0

for every nonzero scalar k; so that a "pure gain" constant does not result
in zero error.

In terms of the eigenvector expansion (2.8), we can readily determine
an optimal u in H which minimizes

for a given x in Ep. For this we note first that

(2.11) Lu- x 112 [L*Lu, u]- [Cu, x] Ix, Lu]-}- [x, x],

so that minimizing (2.4) is equivalent to minimizing

(2.11a) *[L Lu, u]- [u, g]- It, u]

for given g L*x in H. Suppose there is an h in H such that

(2.12)

Then

(2.13) llLu- x

(2.14)

and equality holds if and only if

(2.15)

L*Lh L*X.

[L*L(u h), (u- h)] + Ix, x] [Lh, Lh]

>= Ix, x]- [Lh, Lh],
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Note that we have established that the minimum of (2.13) is given by
(2.14) without resort to any variational arguments. With variational
arguments we only obtain a local extremum. We have shown here that the
minimum is actually an "absolute" minimum. Using (2.8) we obtain
further that the element in (2.12) actually exists and can be computed
from

giving

L*Lh _, Xi[h, 4,d4,1. L*x Ix, e.i]_L*e,

(2.16) h , tx__,_ L* e.
tlJ*x, ]

IL is perhaps necessary go add gha (2.12) does nog necessarily imply

Lh x.

It should also be noted that h is in the range of L*.
Denoting L*L by R, we can define self-adjoint positive square root for

R by various means [3], for instance using (2.8)"

(2.17) .Rl/u _, [u, IX1/%,, ,t,

In terms of R1/2, if we set

[L’x,(2.18) v Xi---5:----- i,

then using (2.8) and (2.17),

and we obtain

Lu x [RI/2u,/l/2u] In, LSx] + Ix, x] [L*x, u]
(2.19) , + x] Iv, v]
This shows in particular that we are seeking the minimum of the first term,
and reduces the problem, of course, to one completely in H. It is of interest
to examine whether the problem can also be stated as one entirely in E,,
at least when we wish to obtain the unique element of minimal norm whose
existence has been proved in Theorem 2.2. For this, let be the orthogonal
complement of 2 with 2 the null space of L. Then is precisely the range
of L* since

[L*x, u] [x, Lu] 0
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for u in 2. Let C1 be the intersection of C and/. This intersection cannot
be empty, unless C is contained in 2, in which case the minimization prob-
lem reduces to finding simply the element of minimal norm in C. Hence
we may assume that C is not contained in 2. If C contains the origin
(that is, the zero element) as an interior point, for instance, C cannot ob-
viously be contained in 2 since

Lu 0

for u in the sphere about the origin contained in C implies that the same
is true for every element in H. In what follows we shall ssume that C is
closed and bounded, and contains the origin gs a interior point. For
given x in E, let z be the minimizing element such that

min]Lu- x]]2 z_ x
u

and consider the set of u in C such that

Lu=z.

Every such u can be written as

where u is the projection of u in R and is uniquely determined by z, and
u is the projection of u in 2, and

z + u, .
In some cases, C may be such that this will imply that u is the element
of minimal norm soughtfor instance, if C is sphere, or more generally,
is specified by functiongl inequality" C is the class of all elements u in H
such that

f(u) M

where f(u) is positive nd

f(.) f() a u ,
f(u, + u) 5 f(ul) + f(u),

f(au) f(u) for positive.

In this case, then, we can write

n x nL*u
ILL*y, LL*y]- [LL*y x] + Ix x]- Ix, LL*y],

which is stated entirely in terms of elements y in E, and y is such that

L*y C.
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The case where C is a sphere of radius M about the origin can be solved
more explicitly using the eigenvectors [e,i} or the eigenfunctions [}. Thus
since we know that the optimal element of minimal norm can be written

where

U
1==1

(2.20) ai __< M2,

we are seeking the minimum of (using (2.13) and (2.16))

[L*L(u h), u hi Xi[a,i c,i]

where

[L*x,

subieet to (2.20). This is a fitfite dimensio:al problem, and we can therefore
get a local extremum by using Lagrange multipliers. Thus we minimize

1=-1

and obtain the solution as

hi ci(2.21) ai t >= 0

where is adjusted so that

ai M

We note that, for this choice of

where I is the identity operator on H. In other words, since [R -t- I] has a
bounded inverse for every t > 0, the optimal element is of the form

[R + ttI]-lL*x.

We have used the Lagrange multiplier method to obtain this result. We
shall now give a general proof that it is indeed the optimal element sought,
and, moreover, we shall not make use of the finite dimensionality of E
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in the proof. For this let, for each u in H,

(2.22) Q(u) [Ru, u] 2Re [u, g]

where Re stands for "real part," and where

R L*L
and

L*
We note that minimizing Lu x ]12 is the same as minimizing Q(u).

The general problem is then to minimize the form Q(u) over H, subject to
u < M2, the operator R being compact, self-adjoint and non-negative.

Since R is non-negative, for each positive number k, (R + lcI) has a linear
bounded inverse.

Iet

u [R + lcI]-g.
Then u [] is a monotone decreasing function of Ic. Indeed,

u u
[- c][(R + cI)-(R + )-(2 + ( + )I)g, g],

and the second factor is positive. Moreover u 2 goes to zero as lc goes to
infinity. Next, let us consider the problem of minimizing, for fixed k,

Q(u) [(R + lcI)u, u]- 2 Re [u, g].

We have

Q(u) [(R + lcI)u, u]- 2 Re [u, (R + .I)u]

[(R +/c) (u u), (u u)]- [(R + )u, u]

where the second term is positive and fixed, while the first term is non-
negative, ttence the minimum is attained at u u

(2.23) Inf Q(u) Q(u) -[(R + kI)u, u] -[g, u].
uH

We shall need to distinguish between two cases.
Case i. Suppose

sp M.
k>0

Since R is compact and non-negative, let us use the fact that it has at
most a countable number of positive eigenvalues {,}, and let {.} be a cor-
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responding set of orthonormalized eigenfunctions. Since g is in/, we know
that

Also

so that

Hence

and we can define

l[g, ]u x--t- ] ’

< M2,

Then uk converges to u0 as lc -- 0, and Ruo g. As we have seen, this is
enough to prove that u0 minimizes Q(u) and, u0 being in/, is also the unique
element of minimal norm which minimizes Q(u).

Case ii. Suppose next that

sup uk > M.
Then there is obviously a positive number, call it k0, such that

Let

Qo inf Q(u)

Now we know from Theorem 2.2 that there is an element uo in C such that

Qo Q(uo)

It should be noted that only the compactness of L was used in the argument,
and not the finite dimensionality of Ep. Let
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We shall first show that actually ,,2 ,/]//-2. For,
Q(uo) inf Q(u) inf [(R + kI)u, u]- 2 Re In, g] lcm

--.m =-m

inf [(R + kI)u, u]- 2 Re [u, g]- km
u6.H

Ok (uk)

Q(Uk) + k[ll uk [[2_ m2].
Hence, in particular,

Q(uo) Q[u,,o] + o[1 U.o m].
But u is in C, and ko is positive. Hence we must have

Also, by Theorem 2.1,

:so that

L[u,,o uo] O,

?0 ?k -Jr-Uz
where u. is an element in 2 the null space of L (or R). But

[u, u0] 0,

since

and hence

[u., u.o] [u, (t +
[(/1 + ]g()I)-lUz, gl

[u/lc,,, g] [_Lu/#o, x] O,

so that by (2.24), u. must be zero.
We may now state our result in its full generality.
THEOREM 2.3. Let L be a compact linear bounded transformation mapping

a Hilbert space H into another Hilbert space Hz. Suppose for a given x in
H2 it is required to minimize
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subject to u being in the sphere C in H1.

u ]]2 M

Then either

(2.25) sup [][L*L + lcIl-lL*x <= M
k>o

in which case the sequence

uk [L*L - kI]-lL*x
is such that uk converges to the optimal element uo of ninimal norm

limllLuk-- x ]]2 inf]]Lu-- x ][2 ]]Luo_ xll
k->O uC

or

sup II(L*L + I)-IL*x > M
k>O

in which case

(2.26) uo [L*L A- koI]-L*x

where ko is adjusted so that

yields the unique solution to the minimization problem.
As a corollary to this theorem we may note that the optimal solution is

always in the range of L*, or its closure. This is immediate if condition
(2.26) holds, since if

[R A- kI]-lL*x u,

then

L*x [R -+- kI]u L*Lu A- ku

or

lcu L*[x- Lu].

If condition. (2.25) holds, and

[R -4- knI]-lL*x u

then similarly

ku, L*[x Lu,],
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SO that u is in the range of L* for every n. It may be also noted that in
this cse

x Luo+z
where L*z O.

This generalization for instance includes the problem of minimizing

fo w(t, dt,

where it is assumed that

II x(t) ]]2 dt < , IlW(t,s) 11" ds dt < ,
and it is required that

fo I1 u(t) dt <

3. Method of steepest descent. We next consider the problem of actually
computing the optimM control function. If we know what the (non-zero)
eigen values and eigen vectors of LL* or L*L are, we can, as we have seen,
display an explicit solution in terms of these. On the other hand, in many
cases, such a determination can be difficult; and in any event, since what
is really needed is an approximation to the optimum for each given x, a
method of iteration which is proven to converge to the optimum is of value.
We shall now indicate an iterative "steepest descent" method in Hilbert
space for the ease where the convex set C is a sphere with center at the
origin.

It has been already noted that the optimal solution is in the range of
L* or its closure. We may therefore work either with LL* or L*L. We shall
describe the iteration method in the generality of Theorem 2.3, since the
fact that H (or Ev) is finite dimensional will not be used. Reference may
be made to the work of Kantarovieh [4] who appears to have been among
the first to describe a steepest descent method in Hilbert space, which in
our context is applicable to the ease where C is the whole space H, or the
sphere is of infinite radius. As before, (2.22), we may state the problem in
H as that of minimizing

Q(u) [Ru, u] 2 Re [u, g],

where
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Let u be the n-th iteration. We define, as a function of lc,

where

Now we note that

Un+l(]) Un- nZn,

.n [Zn Zn]/[(R + lI)Zn Zn]

Zn (R -- ][)Un g.

Un+l(k) 12
is a continuous function of/c and goes to zero as k goes to infinity. Suppose

+1(0)I1__< M,
then we define the (n -[- 1)-th iteration as

Un-I Un--l(O).

Otherwise, we choose the positive number k such that

U+(n) [ M,
and define the (n + 1) -th iteration as

u+ u+().

We shall first show that thus defined,

(3.1) lira Q(u) inf Q(u), u e Me.
For this, let

Q+(u) [(R + kI) u, u] 2 Re [u, g].

Then we have"

On+(Un+) Qn(un) + [n n--1][Un, Un] rn(3.2)

where

[z, z]
r [(R + ]I)z, z]

It is convenient to distinguish between several cases. Suppose first that
0 for n >_- some N. Then for n __> (N - 1), we note from (3.2) that

Qn+l(un+l) Qn(un) rn2.
Hence also

Q(un-t-1) Q(u) r:,
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so that Q(un) is a monotone non-increasing sequence and
n-l-p--1

Q(Un2r-p) q(n) E re.

Since from (2.11),

G(u) >= -Ix, x],

it follows that the infinite series Tv re converges, and hence i particular
rn goes to zero. But

[z, z] [z, z.,Z
rn [Rz z] R z ]12 R

where R denotes the norm of the operator R and is positive. Hence

Making use of the fact that the unit sphere in a Hilbert space is weakly
compact, we note that any subsequence of {u} contains a further subse-
quence, call it u,,0}, such that u converges weakly to an elemet u0 in
the space. Since R is compact, Ru,,k converges to RUo and hence

(3.3) Ruo g.

Suppose we choose the first iteration Ul in the range of L*. Then Un
will be in the range of L* for every n, since

Un Un-- en_lL*[Lun- g].

Now the range of L* is contained in/ which is a subspace, and hence u0 also
belongs to it. Hence u0 is unique; that is, it is independent of the particular
subsequence chosen, because of (3.3). Hence the sequence u, itself con-
verges weakly to u0. Now

Q(u [Ru, g, u,,] [u,,, g]

and hence converges to

Q(uo) -[u0, g],

and since Ruo g, we know that u0 minimizes Q(u) and provides the
element of minimal norm which does so.
Next suppose k, 0 for every n _>- (N -F 1). Using (3.2) again, we can

write

(3.4)

n--1



CONTROL PROBLEMS AND STEEPEST DESCENT ]25

Using the fact that now for n larger than (N -t- 1), u
reduce (3.4) to

M2, we can

Q(u,+.) Q(u,) r,i,

for m larger than (N + 1). But then, as before, this implies that Q(u)
converges and

*n >

Since r,, goes to zero it follows from this that k must be bounded. But

so that

Zn [R q- knI]Un g--+ O.

M" nd, since R is compact, any subsequence contains
subsequence, cll it {u,,,}, such that Ru. converges nd hence by (3.5),
k.u. converges, and hence lso

so that {/c} converges to k0, say. Suppose first that k0 0. Then dividing
through by kn in (3.5),

IIence the sequence {Un} itself converges. Let u0 be the limit. Then

Uo [R + lcoI]-g.
Also every subsequence {k,,} must hve the same limit since

ni [2 M u0

nd there is only one vlue of k0 such that

(3.6) [R + /g0z]--lg M.

This shows that {u,} itself must converge to u0. Next suppose that

k0 0.

Then again, every subsequence kn must have limit zero, for if

limit Ru, g, u,, M
Ild
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we have a contradiction which follows from the fact that

limit [[(R -t- koI)-iRu u01[ M.

On the other hand, the norm of the operator (R -t- kol)-R is actually less
than one (R being compact arid non-negative) so that

Hence it follows that

lira Ru g

and since Q(u) converges, this is again enough to prove (3.1).
Hence the only remaining case we have to consider is one in which there

is a subsequence lc 0 and a subsequencc lC,nn O. Suppose then that

]Cmnt.1 0

lC_l 0

We have using (3.2),
n--1

Q(u,+) Q(u.+) ri,
m2

implying again that r goes to zero and hence that

lira R -I- kI)u g.

Arguing, as before, it follows that the sequence k itself converges, and
so does {u}, establishing (3.1) again. It must be noted that the method of
iteration does not require any a priori estimates concerning x.

4. Relation to prediction theory. It is well-known that the optimal mean
square prediction (or estimation) problem for stochastic processes can be
stated as a minimization of a quadratic form over Hilbert space, the original
treatment of the problem by Kolmogorov in 1941 [5] being already in
Hilbert space language. The explicit connection is simply given by the
step from (2.11) to (2.11a) and has been enunciated as a "duality principle"
by R. E. Kalman [6]. In (2.11) the operator R L*L is a non-negative
"integral" operator with the corresponding kernel function being non-

negative definite. Let x(t) be a Gaussian process having this function for
its covariance and suppose

x(t) s(t) -b N(t)
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where s(t) and N(t) are Gaussian processes (not necessarily independent)
and let it be required to predict (estimate) s(T - a) from x(t), 0 __< __< T
with minimum mean square error. Then if we denote the optimal operation
by

r

x( t)u( t) dt,

the function u(t) minimizes the form

(4.1) [Ru, u] 2[c, u]

where u is now being considered in the L. space with respect to Lebesgue
measure over [0, T] and

c(t) E[s(T + a)x(t)].
Thus in both the "control" problem and the "prediction" problem we are
minimizing the same form, but there is the important difference that in the
"prediction" problem u is free to be any element of the space, not neces-
sarily restricted to a convex set. There is also no unique way of going back
from (4.1) to the control problem, since R can be factored as L*L in many
ways, unless we require "physical realizability", that is, we require in

Lu v

that

(t) Jo W(t, s)u(s) ds.

The conditions under which, and the means by which, this can be done are
still largely unsolved. Also there are many prediction problems involving
non-linear operations, the control interpretation of which has dubious
meaning.
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1. Introduction. The importance of linear multivariable control systems
is evidenced by the large number of papers [1-12] published in recent years.
Despite the extensive literature certain fundamental matters are not well
understood. This is confirmed by numerous inaccurate stability analyses,
erroneous statements about the existence of stable control, and overly
severe constraints on compensator characteristics. The basic difficulty has
been a failure to account properly for all dynamic modes of system response.
This failure is attributable to a limitation of the transfer-function matrix--
it fully describes a linear system if and only if the system is controllable
and observable.
The concepts of controllability and observability were introduced by

Kalman [1.3] and have been employed primarily in the study of optimal
control. In this paper, the primary objective is to determine the control-
lability and observability of composite systems which are formed by the
interconnection of several multivariable subsystems. To avoid the limita-
tions of the transfer-function matrix, the beginning sections deal with
multivariable systems as described by a set of n first order, constant-
coefficient differential equations. Later, the extension to systems described
by transfer-function matrices is made. Throughout, emphasis is on the
fundamental aspects of describing multivariable control systems. Detail
design procedures are not treated.

2. Definitions and notation. Let a multivariable system S be represented
by

2 Ax + Bu
()

v= Cx/Du

where:
u u(t), p-dimensional input vector.
v v(t), q-dimensional output vector.
x x(t), n-dimensional state vector, n is the order of S.

2(t), time derivative of state
A, constant nth order differential transition matrix.

* Received by the editors July 5, 1962 and in revised form November 1, 1962.
Presented at the Symposium on Multivariable System Theory, SIAM, November 1,
1962 at Cambridge, Massachusetts.

Instrumentation Engineering, University of Michigan, Ann Arbor, Michigan.
Reference [14] gives a historical account of controllability and lists other refer-

ences.
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B, constant, n row, p column, input matrix.
C, constant, q row, n column, output matrix.
D, constant, q row, p column, transInission matrix.

If n 0 the system is said to be static.
The characteristic roots Xi, i 1, n, of A are assumed to be distinct.

This greatly simplifies the proof of theorems and prevents the main course
of the paper from becoming obscured. Besides, there are few practical
systems which cannot be satisfactorily approximated with an A which has
distinct roots.

Let p be an n-th order nonsingular matrix which diagonalizes A :a

(2) p-lAp- A

Define normal coordinates as the components of the n-dimensional state
vector y,

(3) x py.

Then the normal form representation of S is given by

(4)
Ay -t- flu

v /y q- Du,

where

(6)

p-lB, the normal form input matrix,

Co, the normal form output matrix.

The normal coordinates are not unique. If desired, they may be made so by
arranging the Xi in order of increasing magnitude (roots with identical mag-
nitudes may be taken in order of increasing angle) and choosing the column
vectors of p, o, i 1, n, to have unit Euclidean length.

For the purpose considered here, the system S is stable if Re Xi < 0 for
all i.
The rank of the input ru is defined as the rank of the matrix B (or equiva-

lently, the rank of ). It is the "effective" number of inputs which can

See Bellman [15, p. 198.]
Familiar results of matrix theory will be used without comment. These results

can be found in Bellman [15] or other standard texts.
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influence the state vector. The integer (p ru) _>- 0 is therefore the number
of ineffectual inputs. It is possible with no loss of generality to reduce the
number of components of u by (p r).
The rank of the output r is defined as the rank of the matrix C (or 7). It

is the effective number of outputs available for observing the state of the
system. The integer (q r) >- 0 gives the number of outputs (components
of v) which are linearly dependent if D 0. It is possible without loss of
generality to reduce the number of columns of C by (q r).

3. Observability and controllability. A system S is controllable if/ has no
rows which are zero. Coordinates yi corresponding to non-zero rows of/ are
called controllable; coordinates corresponding to zero rows of $ are called
uncontrollable. Uncontrollable coordinates can in no way be influenced by
the input u. Thus a system which is not controllable has dynamic modes of
behavior which depend solely on initial conditions or disturbance inputs.
Disturbance inputs are not indicated in (1) and will not be treated in this
study. Sometimes, they may be satisfactorily handled by means of ap-
propriately introduced initial conditions.
A system S is observable if 7 has no columns which are zero. Coordinates y

corresponding to non-zero columns of 7 are called observable; coordinates y
corresponding to zero columns of 7 are called unobservable. Unobservable
coordinates are not detectible in the output v. Thus a system which is not
observable has dynamic modes of behavior which cannot be ascertained
from measurement of the available outputs.
A few general remarks are in order. First, the definition of controllability

is different from Kalman’s [14]: "A system is controllable if any initial state
can be transferred to any desired state in a finite length of time by some
control action." However, under the restrictions of the previous section the
two definitions are equivalent. More recently, Kalman [16] has taken the
same point of view given in this paper. For some additional remarks see the
note by Ho [17].

Second, there is a striking similarity in the definitions of controllability
and observability, the rows of playing the same role as the columns of 7.
This is also true of Kalman’s definitions, and means that remarks similar to
those of the previous paragraph can be made about observability. More
importantly, for every conclusion concerning controllability, there is a cor-
responding one concerning observability. This will be evident in the state-
ment and proof of theorems which follow.

Finally, the definitions become more involved when he characteristic

Usually it is desirable to eliminate ineffectual inputs and superfluous columns of
C. Exceptions occur when mplitude constraints are imposed on the u (such as

u < k, 1, p) or noise is present in the measurement of the v.
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uc

U V +

Fla. 1. System S and is partitioned representation

roots are not distinct. The diagonal matrix is replaced by a Jordan normal
form and the conditions on and , are not so simply stated.

In order to deal more concisely with the above concepts consider"
THEOREM 1. A system S may always be partitioned into four possible sub-

systems (shown in Figure 1)"
1) a system S* which is controllable and observable and has a transmission

matrix D,
2) a system S each of whose normal coordinates are observable and unco.r-

trollable,
3) a system S each oj’ whose normal coordinates are controllable and un-

observable,
4) a system Sf each of whose normal coordinates are uncontrollable and

unobservable.
All subsystems have zero transmission matrices except S*. Also, u u u,

v v*+v,andn n*nt-n+ncn.
The proof of Theorem 1 follows directly from equations (4) by partition-

ing y according to the restrictions 1 through 4). A somewhat more involved
partitioning may result when the characteristic roots are not distinct.
Thus the only subsystem which has to do with the relationship of v to u is

S*. The observable system S only adds a disturbance v to the controlled
part of the output v*. Although S, S and Ss appear to have little im-
portance in system analysis this is not necessarily so. If state variables ap-
propriate to the description of S, Sc, and Ss get large, neglected nonlinear
couplings may become important or physical damage of the system may
result. This certainly will be the case if S, S or S are unstable, i.e. there
are hidden instabilities.
From Theorem 1 it is clear that a necessary and sufficient condition for

the absence of S, S, and S is that S be controllable and observable. It is
possible to determine if S is controllable and observable without recourse to
the normal form representation by means of the following theorem.
THEOREM 2. Let bi i 1, p, be the columns of B and cir, i 1,
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q, be the rows of C. A system S is controllable (observable) if and only if the
vectors eki Akbi, i 1, ..., p, k O, ..., n l(ek (Ar)(ci),
i 1, q, k O, n 1) span the n-dimensional coordinate space.
The controllability part of this theorem has been proved using the pre-

viously mentioned alternative definition of controllability [14]. By duality
[13, 16] the observability part may be obtained for an alternative definition
of observability [13]. The fact that the same results are obtained for the
different definitions proves their equivalence.

Proo.-f. First consider the controllability part of the theorem.
To prove necessity assume S is controllable and write

(7)

Since fl [ill fly] has no zero row it is possible to form a vector fl+
]cfl + + k,flv none of whose components is zero. Clearly, the vec-

tors e+ patti+, k 0, n 1 form a subspace of the space defined
by the e. But

(8)

det [e0+ en-+]

o o o2+ 0
0

(det p)(det V)({i32+... n-t-) 0

because the Vandermonde determinant V is nonzero for distinct h, p is non-
singular, and the + are all nonzero. Thus the subspace is n-dimensional.
Therefore the e must span the n-dimensional space.
To prove sufficiency assume the e span the n-dimensional space. Then

for any r O, say

the inner product (r, e) cannot be zero for all k and i. But
k(9) (r, ea) (r, pA fli) (AkoTr, i) kl li

Assume all 1i 0 and a contradiction is obtained. Thus not all 0. By

The superscript T indicates the transpose of a matrix or vector.
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changing r the argument also works on all other rows of . Hence S is co-
trollable.
To prove the observability part of the Theorem note (,r is i-th row

of 7)

ek (Ar)kc (pAp--1)T}I(/iTp--])T

(10) (p-l)TilcpT(p--1 Ti
(p-l) rhk,.

Since (10) is similar to (7) the remain.ig steps are the same as those in the
controllability part.

4. Observability and controllability of composite systems. In this
section the controllability and observability of composite systems are
related to the controllability and observability of their subsystems. Theo-
rems 3 and 4 treat respectively the parallel and cascade connection of two
subsystems. Successive application of these theorems extends the result to
composite systems which consist of many subsystems connected in parallel
and cascade. Theorem 5 is the central theorem of the paper. It states con-
ditions for the controllability and observability of a general feedback sys-
tem.
THEOREM 3. Let the parallel connection of systems Sa and Sb .form a com-

posite system S (see Figure 2). Then:
i) n na- n,;
ii) k n la na klb nbb
iii) a necessary and sucient condition that S be controllable (observable) is

that both Sa and S be controllable (observable).
To prove Theorem 3 let S and Sb be represented in normal form. Then

FIG. 2. Parallel connection of S and S
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from the notation in Figure 2 the normal form of S can be chosen so that

(11)
3 L3A " [’/’a"Yb], D D + D.

Simple inspection of (11) yields all parts of the theorem.
THEOREM 4.. Let the cascade connection of system Sa followed by Sb form a

composite system S (see Figure 3). Then"
i) n-- nanb;
ii) ),., M Xla, Maa, Xlb, Xnbb
iii) a necessary (but insufficient) condition for the controllability (observ-

ability) of S is that both Sa and Sb be controllable (observable);
iv) if Sa and Sb are both controllable (observable) any uncontrollable (un-

observable) coordinates of S must originate, when designated according to
characteristic root, in S S

Using the normal form representations of Sa and S yields-- I Aa 0 1 I a I IYal(12) 3b’Ya Ab
X 2V bDa U, where x--

Y

v [D% %Ix q- DDu.

as the set of equations representing S.
To put these equations in normal form define

(13) x= I y’ y=
_

x,

where --(/)Aa - Abb --3b’Ya, i.e.,

(14) [o]
kia- kjb

denotes the ij element of 3bTa. The assumption of distinct roots

U=UcI Vb= V

\
V’

/

FIG. 3. Cascade connection of Sa followed by &
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requires h. bib 0 all i and j. It is easily shown that

(15)
Ay -t- flu

v ,y q- Du,

where

(16) Ab (--, + flbD,)

/ [(Db/. + 5’b)’b], D D.D,.

Results i) and ii) follow immediately from inspection of (15). Consider
the controllability parts of results iii) and iv). From (14) and (16) it is
obvious that a null row of , or fib will result in a null row of . Thus the
necessity of iii) follows. It is also clear that -a + flbDa may have a null
row even if a and/b do not. Thus iv) and the remainder of iii) hold. Cor-
responding reasoning applied to the columns of , yields the observability
results.

Formulas (16) can be used to determine if S is controllable or observable.
Unfortunately, a fair amount of work is involved and there appears to be no
way of getting simpler sufScient conditions for the controllability or ob-
servability of S.

It is helpful to consider a few simple examples where S is uncontrollable
or unobservable even though S, and S are controllable and observable.
Let Sa and Sb be given by:

(17) )la Yla Yl Ylb

V2a Yla.

Then if xl y and x y define the state vector of S,

o](18) 0 --2
x + ul

vl=[0 1]x.

In this example S is uncontrollable and unobservable because the matrices,
De, Db, ’Ya, b, which "couple" Sa and Sb are such (D, Db 0, b’ 0)
that the input ul never reaches the normal coordinate of Sb and the normal
coordinate of Sa is not passed on to the output v. This particular situation
cannot happen in single-input, single-output systems, since it would imply
either 0 or tb 0.
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For the second example let

la --Yla "- Ul
(.9)

Vla Yla - Ul Vl Ylb Ulb.

Taking the state vector of S as xl y, x2 Yl gives

(20) -2
x +

and for

v= [1 -1]x-u,

11(21) P= 1

the normal form representation is

(22)
Y-- 0 -2

y +
v- [0 --1]y-- ul.

Equation (20) shows that x yla and x2 Ylb can individually be con-
trolled and observed. Yet from equation (22), S is clearly uncontrollable
and unobservable. This apparent paradox is resolved by observing that the
uncontrolled (and therefore unalterable) coordiate y2 xl -t- x:

--Ya - Yib. Therefore y.ta and yl_ cannot independently be controlled
or observed.
A third example arises, applicable to the parallel connection of Sa and

Sb, if the assumption in section 2 of distinct characteristic roots is waived.
Then iii) of Theorem 3 becomes analogous to iii) of Theorem 4, in that the
stated condition is necessary but not sufficient. Let Sa and S be identical
first order systems

(23)

Then S is given by

/ --yo + Ulc C a, b.

1-1 0 I [111(24) 2
0 -1 x-i- u.

While yl x and y x are controllable, they are not independently
controllable, since their difference is given by the solution of

(25) (- ) -(x- x).

THEOREM 5. Systems Sa and S .form respectively the forward and return
paths of a feedback system S (see Figure 4). Let the cascade connection of Sa

Ul
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U VEI = VU

/

F.c,. 4. Feedback system S with S,, in the forward path and S in the return path

followed by Sb be Sc and of Sb followed by Sa be So. Assume that (I - D,D)
is nonsingular. Then:

i) n=n+n,
ii) a necessary and sutcient condition that S be controllable (observable) is
that S(So) be controllable (observable),
iii) a necessary but not sucient condition that S be controllable (observ-
able) is that both Sa and S be controllable (observable),
iv) if S and S are both controllable (observable)any uncontrollable un-
observable) coordinates of S are uncontrollable unobservable coordinates

of S( So) and originate in S.
Before going on with the proof, a few general observations are made.

The nonsingularity of (I - DD), which is equivalent to the nonsingular-
ity of (I - DbDa), is physically reasonable, for if it is broken the static gain
D (I - DaDb)-D D(I + DbD)- of the closed-loop system S is unde-
fined. Introduction of systems S and So is a natural consequence of proving
separately the controllability and observability parts of the theorem. Since
controllability involves only the influence of the input u on S, the system
shown in Figure 5a suifices. Similarly, determination of observability leads
to the system of Figure 5b. Statements analogous to ii) of Theorems 3 and
4 are not possible, since feedback alters characteristic roots.
By employing

a U Yb
(2)

and the equations describing S and S, the equations describing S are
obtained. Inspection of these equations shows i) is true; however, they are
too complex to yield a simple proof of ii).
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(a) (b)

FIG. 5. Systems for determining the controllability (a) and observability (b) of
feedback system.

Consider first the controllability part of ii). From Figure 53

Yb )c
(27)

Uc U- Yc.

Using these equations and the normal form equations for St gives (x yc)

(28) Ax + Bu

for S, where

(29) A c- Bc
(30) B flc(I + DbDa)-1.

It is easily shown from the nonsingularity of (I + DbDa)-1 that a row of B
will be zero if and only if the corresponding row of /c is zero. Thus B has
non-zero rows if and only if Sc is controllable.
The sufficiency part of ii) is proved by contradiction. Let Sc be control-

lable and assume that S is uncontrollable. Then from Theorem 2 the vectors
eke, lc 0, n 1, i 1, p cannot span the n-dimensional space.
That is, a non-zero vector r exists such that

(r, e) 0,
(31)

k- 0, ,n-- 1, i 1, ,p.

Or equivalently,

(32) r’AkB rr(Ac- B)B O, ] 0,..., n 1.

Evaluating (32) starting with k, 0 gives

rrB 0

(33) r(A- BS’c)B r Afi 0r AcB (r B)cB

rr (A. Bc)’-IB : -Br n, O.

From Theorem 2 it can be seen that the columns of the matrices AB,



CONTROLLABILITY AND OBSERVABILITY 139

/c 0, n 1 span the n-dimensional space if and only if B has no zero
row. Since by the previous paragraph B has no zero row, this and (33)
imply that r is zero. Thus the contradiction is obtained.
The necessity part of ii) is obvious from the discussion at the end of

section 4.
The observability part of ii) is proved by starting with Figure 5b and

So. Then S is given by

2= Ax
(34) A Ao oC, C (I + DaDb )-l’yo

Y Cx
The above steps can then be applied to the columns of C with the desired
results.
Theorem 4 applied to the determination of Sc and So gives iii).
Consider the controllability part of iv). From (28), (29), and (30) it can

be seen that if the i-th row of/c is zero, 2i Xix. Thus the uncontrollable
coordinate yi xi is unchanged by feedback. Moreover, by Theorem 4 this
coordinate must originate in Sb. Similar arguments give the observability
part of iv).
The most important result of Theorem 5 is ii). It says that closed-loop

controllability and observability can be ascertained from the open-loop
systems Sc and So. Thus one is not forced to deal with intricate closed-loop
equations.
When Sb is static an even simpler situation exists. Then iv) implies that

S is controllable and observable if Sa is controllable and observable.
Further information on uncontrollable and unobservable coordinates can

be gleaned from Theorems 3, 4, and 5. Let S denote the combination of
systems S, S, and Sz, that is, the part of system S which is not controllable
and observable. From Theorem 1 it is clear that the coordinates of
$2, S, are uncontrollable or unobservable in the composite system S.
Thus Su, S, are part of Su. To see what happens to the remaining
coordinates of Sa, S, it is sufficient to examine by means of Theorems
3, 4 and 5 the interconnection of the controllable and observable system
Sa*, S,*, As an example take the feedback system of Theorem 5" S
consists of Sa and S plus the coordinates of S* which are uncontrollable
in the system Sa* followed by S* and unobservable in the system Sb* fol-
lowed by S*.

5. The transfer-function matrix. The traditional approach to the analysis
and synthesis of multivariable systems is based on the transfer-function
matrix rather than the differential equations (1). To obtain a transfer-
function representation of a system S, it is assumed that the output vector v
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is entirely due to input forcing u, i.e., initial conditions are zero. Let La-
place transforms be denoted by upper-case letters.
Then

w(s)
where s is the Laplace-transform variable and H(s) [H.] is the q by p
transfer-function matrix. The element H(s) is the scalar transfer function
which relates the i-th output and the j-th input.
To obtain the transfer-function matrix from the differential-equation

representation consider:
THEOREM 6. Given a system S defined by equations 1 and (4), the transjr-

function matrix is

H(s) C(Is A)-B + D y(Is A)-I + D

=1 s- i* + D

where the matrices K have ranlc one.
The first two expressions for H follow directly from the Laplace transform

of (1.) and (4) with x(0) y(0) 0. Since (Is A)-1 is diagonal, the
second expression can be written out in terms of the columns of y, y, and
the rows of 5, 5i’:

37 II ’’ - .D.

For any i corresponding o an uncontrollable or unobservable coordinate,
y or 5’ is zero. Thus the sum needs to be taken only over the characteristic
roots associated with S*. K 7,, , being a vector outer product, is of
rank one.
The important, and not surprising, conclusion of Theorem 6 is that a

transfer-function matrix represents the controllable and observable part of
S, S*. It has been noted in Theorems 4 and 5 that controllability and
observability of subsystems does not assurethe controllability and observabil-
ity of a composite system. Thus transfer-function matrices may satisfac-
torily represent &ll the dynamic modes of the subsystems but fail to repre-
sent all those of the composite system. Furthermore, the loss of hidden
response modes is not easy to detect because of the complexity of the trans-
fer-function matrices and matrix Mgebra. Since differential equations offer
a safer basis for describing inultivariable systems it is valid to ask why
transfer-function matrices should be used at all. The answer is that fre-
(tuency domain design procedures and the smaller size of H (it is q X p
rather than n X n) often make computations more manageable.
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If the transfer-function matrix of a physical system is given it is generally
impossible to derive the corresponding differential-equation representation.
This is because the state variable choice is not unique and all information
concerning systems Sc, S, and Ss is missing. It is possible, however, to find
a set of differential equations (1) or (4) which yield the same H(s) as a
prescribed H(s). Procedures for doing this are described below. The main
result is stated here as a theorem and gives the required order of the dif-
ferential equations.
THEOREM 7. Given a rational transfer-function matrix H(s) whose elements

have a .finite number oj’ simple poles at s , i l, m in the finite
s-plane. Let the partial .fraction expansion of H be,

(38) H s _, K____ -t- D,

where

(39) K,z lim(s- ):)H(s),

(40) D limH(s).

Let the ran of the i-th pole, ri be defined as the ran]c of K Then H(s) can be
represented by differential equations (l) or (4) whose order is

(41) n E r,i.
i-----1

The eigenvalues of A and A are distinct if and only if all r 1. It is impossible
to represent H(s) by a differential equation whose order is less than n.

First it will be shown how H(s) can be represented by a set of differential
equations.

Since the matrix K is of rank r there are r, linearly independent columns
in K. Let eel, j 1, r be such a set of columns. Then every column
of K, can be expressed s a linear combination of the e.. A compact nota-
tion is

(42) K,i E,iF

where E,z is a q X r matrix which has columns e.. To determine F pre-
multiply (42) by Er. Then
(43) ErK ErEF.
But the determinant of EfE is the Gram determinant [19] of the e., and
is nonzero because the c.,; are linearly independent (this is a good test for
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picking a linearly independent set eii). Thus
TE --1 T(44) F (Ei ) E K.

Once F is known K can be expressed as

where ffs is the j-th row of F. Thus

(6) H() f
= ’= 8- X

This formula is similar to (37) except that there are r vector outer products
for each X. Thus H(s) can be represented by (4) where

X1 I1 0 0

0

(7) L 0

I-..El 1
nd L is identity trix of order r. Thus th root X is of multiplioity
nd :r,.
To sho that re,libation of lor order is o possible, the ploe

transform of (4) is tken, defining transfer-function mtrix . However,
to cover 11 possibilities it is essential that A tk its most tnrl form,
Jord normal form. For o5motristic root of ultiplioity f, this ns
tkt th number of Jordan blocks ith this ohmotristio root is not xd,
only tSt ll the blooks tken together form mtrix of order f. Hoeeer,
shos that ll Jordan blocks must be of order one if is to hve simpl

poles (unless some modes re unoontrollble or unobservble, hioh only
increases the order of (4)). Furthermore, the rank of the residue of

X is no treater thn th ultiplioity of X. Thus if is to hv th
form of H in (3S) th dierntil qutios () ust hv miimu
order

ri.
i=l

If the equations () hve order grtr thn n, th rlition is either
unoontroilble, unobserwhle, or both.
Theor 7 provides solution of th synthesis problem, sinoe once
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differential equations (1) or (4) are known, they can be realized as a physi-
cal system (example, an electronic differential analyzer). Furthermore, the
synthesized system uses a minimum number of dynamic elements. The as-
sumption of simple poles can be relaxed, but at the expense of considerable
additional complexity. Kalman [16] gives an alternative procedure for
determining n.
Theorem 7 and a simple example illustrate how the order of a system

represented by a transfer-function matrix may be underestimated. Let

s+l s-t-1
(4s) H()=| ---1 1 s+l +

(s- 1)(s-2) s-t-2
s+2

A first glance it might be guessed that the system has order two, but
rl -t- r2 2 -t- 1 3, so the minimum order is three. One realization of an
equivalent third order system is shown in Figure 6. It is possible that the
actual order of the system may be greater than three. For example, in
Figure 7 the order is five.

Underestimation of system order is the reason why most erroneous
stability analyses have gone unnoticed. In a stability analysis the number
of characteristic roots considered should at least be equal to the sum of the
minimum orders of all the subsystems. This is easily checked by means of
Theorem 7--and errors in many references gave been noted.

If a transfer function matrix has any poles of rank greater than one, the
assumption of distinct characteristic roots, which was made in all prior
developments, is violated. If such transfer functions are encountered,
an approximating system may be set up (use approximation to equations
(47)) which has poles of rank one. Then all the previous results can be
used.
From the above discussion it is clear that each element of H(s) is an

integral part of the whole description. Thus it is generally not permissible
to partition a transfer-function matrix into several transfer function
matrices and treat the resulting matrices as though they describe distinct
systems. Yet, this has been done consistently in the representation of
plants which have more inputs than outputs [9, 12]. As a consequence er-
roneous statements have been made concerning the existence of stable
feedback systems.

McMillan [18] defines the degree of a square ration al matrix, which is equivalent
to n, but the development is more complicated being based on the Smith normal
form of a polynomial matrix. He also shows that if the matrix is an impedance matrix,
it may be synthesized by a passive network with n, and no fewer, reactive elements.

See for example [10, 11].
This has been noted by the author in a discussion [12].



144- ELMER G. GILBERT

U2(s)

-t- v(s)

FI(. 6. Third order representation of H(s).

U2(s)
Fl.(. 7. Fiftlt order representa.tion of H(s)

6. Transfer-function representation of multivariable feedback systems.
Once the limitations of transfer-function matrices are recognized, it is
possible to apply them successfully to the analysis and synthesis of feedback
systems. In what follows it will be assumed that ll transfer-function
matrices have simple poles of rank one. This will keep the transfer-function
representations consistent with the differential-equation representations
specified earlier.

Let Ha and H be transfer-function matrices representing Sa and S in
Figure 4. Then the developments,

(49)

(50)

and

(1)

(52)

Ua-- V- Vb-- U- HV U- HbHaU,,

(I + H,Ha)-’U,
V HaUa Ha(I -- HbHa)-’IU,

V H(U- Vb) HaU- HaHbV

(1 n- HHb)-HaU,
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give alternative expressions for the transfer-function of the feedback sys-
tem S,

(53) ti II(I + HbHa)-1 (I -t- HaIIb)-lHa.
H represents the controllable and observable part of S, S*.
The remaining part of S, S, was considered at the end of section t.

Systems S and S naturally are missing from the representation H be-
cause they are not represented in Ha and H. The coordinates of S* which
are not controllable and/or observable in S correspond to the poles of H
which do not appear in HH and/or HaHb. In the derivation for H it is
easy to see where the poles of H are lost: (49) gives those of HbHa and
(51) gives those of HH. It is not so easy to see that no additional poles
are lost, a difficulty which has to do with complexities in evaluating the
inverse of a matrix of rational functions. This is one of the reasons that led
to the more careful treatment of section 4.
Suppose that all the subsystems which make up H md II are con-

trollable and observable. This is a reasonable assumption if transfer-
function matrices are to be used. Then from the preceding it is plain that
the characteristic roots of the feedback system are given by: 1) the poles
of H (these roots correspond to the dynamic modes in S which are con-
trollable and observable), 2) the poles of H which do not appear as poles
of HaHn, and/or HHa, 3) the poles of the trm’sfer functions representing
the subsystems of Sa and S which do not appear respectively in Ha and Hb.

In the course of system synthesis and stability analysis all characteristic
roots of the feedback system must be considered. Procedures for handling
the characteristic roots in category 1) have been developed reasonably well
in the literature. Therefore, additional effort here will be directed at 2) and
3). In particular, the problem of pole cancellation in multiplying two
transfer-function matrices will be explored. This problem applies directly
to 2), and often to 3), since the systems Sa and S are usually a cascade
connection of subsystems. If S or S are themselves feedback systems
they must first be analyzed as feedback systems before progress can be
made on the analysis of the overall feedback system.

7. Pole cancellation. Consider the cascade connection of the controllable
and observable systems S and S (not the Sa and S of the previous see-

tion, see Figure 3). The transfer-function representation gives

(54) H

If H has fewer poles than the sum of poles in Ha and H, pole cancellation

The special case where S is static and S is the cascade connecion of two sub-
systems has been considered in [9, 12]. The results obtained are not as general as those
of the next section.
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has occurred and the system S is uncontrollable or unobservable. To go
further, a more detailed notation is required.

Let Ha be written as

() Ho ha

where ha is the characteristic polynomial for Sa,

(56) ha a(t Xla) (t’ Xnaa) ]a O.

Since it has been assumed that Ha has simple poles of rank one, ha has no
repeated linear factors.1- The elements of the matrix 5Ca are polynomials
in s. Such a matrix is said to have a factor, if every element of the matrix
has the same factor. Since Sa is controllable and observable 3Ca has no
factors common with ha. Similar remarks apply to Hb.

Using the notation

(57)
and

(58) h hbha,

system S is controllable and observable if h and 3e do not have common
factors. Any linear factor of h cancelled in H by a like factor of 5e corre-
sponds to an uncontrollable or unobservable mode in S. Unless the ele-
ments of 5Ca and 3eb are in some way related, the possibility that h and 5C
will have common factors is remote.
The most common situation which causes a and 5C to be related is that

of compensation where either Ha or H is fixed, and the other (the com-
pensator) is chosen to make H equal a desired transfer-function matrix
H. Clearly, if he does not equal hha the compensated system S will be
uncontrollable or unobservable. Thus certain constraints must be imposed
on He if S is to be controllable and observable. Often it is suttieient to
require that only the unstable modes of Sa and S be controllable and
observable in S. This reduces the number of constraints.
The following treatment of constraints assumes pre-eompensation (H

fixed) and Hb square (Pb qb). The assumption that Sa is controllable and
observable is reasonable because a minimum order realization of Ha must
be controllable and observable. Also, it is pointless to consider an I-I which
corresponds to an uncontrollable or unobservable system.

Formally, compensation requires

(59) Ha H-I[Ie.
10 Here the term factor means a non-consta,nt factor.
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Therefore Itbl must not be identically zero..This is assured if Bb and C
have rank p. Expansion of (59) yields

(60) It. [adj H] H h [adj b]

Let the greatest common divisor of the numerator and denominator be g.
Then

and

because and h cannot have a common factor if S is to be controlluble
and observable.
From (57), (58), (61), and (62)

gild

(64) h hh 3C g

Since h g- is the only fctor common to both h nd ( and h do
not hve common fetors) its linear fctors give ll the modes which re
uncontrollable nd unobservble in S. Suppose all unstable modes of
re to be controllable nd observable. Then ll linear factors of h
which go to zero in the right-hlf s-plane must be included in g, or equiva-
lently s common factors of h 3 nd h [dj ] 3. This hppens only
if 1) h includes the right-hlf-plne fctors of h, nd 2)[dj ]
includes the right-hlf-plne fctors of .
Very often the constraints cannot be imposed as indicated. Consider the

example

Both poles hve rank one. Constraint 1) requires h to hve the fctor
(s 1). Suppose 2) is to be stisfied with 3C diagonal. Then

(66) [adj b] Cd 1 22d --,11d 822dJ"
Since 1 (s" 1), each element of (66) must include the factor
(s 1), which in this case mea,ns both and ( have the factor (s 1 ).
But (s 1) cannot be a common factor of 5C and h. The same problem
also occurs if .f , 0. As will be seen shortly, the diculty can be
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resolved only by letting He have a pole of rank two at s 1. This is the
same constraint which would result from procedures described in the
literature [9, 12]. It has not been noted previously that it may be relaxed
if He is not diagonal, a fact which is of interest, since present design pro-
cedures are based on diagonalization of the open-loop transfer-function
matrix.
The above analyse camot be extended readily when H, H, or He

have poles of rank greater than one, because then common factors in the
numerator and den.onfinator of Ha, H, and .He do not necessarily imply
that the systems are uncontrollable or unobservable. Theorem 7 offers a
satisfactory alternative approach. System S is controllable and observable
if the order of S as determied from H He is equal to the order of S plus
the order of S. To simplify the application of this statement the following
assumptions are made:i) Ha Hb, and He all have simple poles, ii) H has
poles of rank one, iii) S,. md S are controllable and observable, iv) He,
is diagonal. Then S is controllable nd observable if nd only if

(7)

Define

rnk [lira (s )tt0,] -t-- rank [lim (s X)H,I rank [lim (s X)H,I,

(68) G .H- [g, g,]

and let ( 0 if h. is analytic at s ),, l if h., has a simple pole at
s . Using (59) and ii), (67) can be written as

rank [lim {(s k)hneg.’" (s h)hg,}]

p

,i l h k,,’"(69) ,i=,.

p

i=1

Once the g, are computed, constraints on the h.,:,z such that (69) is
satisfied are easily found. For example, with H, as defined by (65),

(7o) g-’= -1
g=

s

Consider 1. Clearly, (69) holds only if .f. f 1. Thus both hx and
h,e have simple poles at s 1. The same result is true at s --1. Other
values of s X which must be considered are those where H (and also H)
has poles. Since for s 1, g and g are linearly independent, (69) will
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be satisfied automatically. If gl. or g2 had poles they would have to be
included as zeros of hlld or h22d. AS before, it is often suttieient to impose
the constraints only at X values which have positive real parts, letting
some stable modes be uneontrollab!e or unobservab!e. In this example,
the only active constraint would then be that hll, and he have simple
poles at s 1.

Usually, the g are analytic at, s X1, Xnb. In fact with ii), a
necessary and sufficient condition for analytieity at s X is that K. and

p

E Ka’b

have columns which span the p-dimensional coordinate space. Further-
more, if G(s) is analytic at s X then it can be shown that G(X) is of
rank p 1. Thus for X X equation (69) is satisfied if h, i 1, p
have simple poles at s X. Many times, a considerably less severe con-
straint is sufficient. For example, if gl(M) 0(g, g, are linearly
independent) only h, requires a pole at s Xb. Or suppose g,(X)

lclg.t(X,,) q- ]c,g(Xb) where ]c and ]c are arbitrary constants; then (69)
is true if.g= 1, i= 1, 2, 3 and . 0, i=4,..-,p.

Fin,lly, consider an example where G(s) is not analytic at s X.

(71) Hb

(72) G

2s -(s- :t)
(s- 1)(s q- 1) 2(s q- 1.)

-(s- .) -2(s- .)
(s -t- 1) (s q- 1)

(s + 3) ( + 3) |.

I--2(s-- 1.) --4s
!

Take X 1. If ., . 1 (the usual constraint [9, 12]), (69) is not satis-
fied (S is not controllable and observable even if a multip!e pole treatment
is considered); but it will be satisfied if , 1 and h2a has a zero at s 1.
If stable modes are to be controllable and observable 1 42 1 a46 )k 1.
and hld and h must have zeros at s -3.
Though the above is a limited treatment, it does allow solution of many

compensation problems and indicates the complexity of the situation.
With obvious modifications the ease of pos--eompensation (H fixed)
can be handled.
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8. Conclusion. From the foregoing it should be concluded that too great
an emphasis on operational methods (the transfer-function matrix) is un-
wise. Differential equations (1) arise naturally in relating the physical
properties of a system to its response characteristics, and any mathematical
procedure which neglects information contained in these equations should
be viewed skeptically, it It is surprising that physical considerations have
ot raised more doubts about the transfer-function representation earlier.
Certainly, the errors of underestimated order would not have occurred if
any effort had bee made to relate the mathematical representation to the
physical world--for example, by means of system simulation.

Finally, it should be noted that the synthesis of a multivariable feedback
system is truly a formidable task. Unwieldy calculations, complex compen-
sation constraints, and difficulties in evaluating the effect of disturbance
inputs and parameter variations all complicate the search for satisfactory
design procedures. The results developed above should at least provide a
sound basis for this search.
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MATHEMATICAL DESCRIPTION OF LINEAR
DYNAMICAL SYSTEMS*

R. E. KALMAN
Abstract. There are two different ways of describing dynamical systems: (i) by

means of state w.riables and (if) by input/output relations. The first method may be
regarded as an axiomatization of Newton’s laws of mechanics and is taken to be the
basic definition of a system.

It is then shown (in the linear case) that the input/output relations determine
only one prt of a system, that which is completely observable and completely con-
trollable. Using the theory of controllability and observability, methods are given
for calculating irreducible realizations of a given impulse-response matrix. In par-
ticular, an explicit procedure is given to determine the minimal number of state
varibles necessary to realize a given transfer-function matrix. Difficulties arising
from the use of reducible realizations are discussed briefly.

1. Introduction and summary. Recent developments in optimM control
system theory are bsed on vector differential equations as models of
physical systems. In the older literature on control theory, however, the
same systems are modeled by ransfer functions (i.e., by the Laplace trans-
forms of the differential equations relating the inputs to the outputs). Two
differet languages have arisen, both of which purport to talk about the
same problem. In the new approach, we talk about state variables, tran-
sition equations, etc., and make constant use of abstract linear algebra.
In the old approach, the key words are frequency response, pole-zero pat-
terns, etc., and the main mathematical tool is complex function theory.

Is there really a difference between the new and the old? Precisely what
are the relations between (linear) vector differential equations and transfer-
functions? In the literature, this question is surrounded by confusion [1].
This is bad. Communication between research workers and engineers is
impeded. Important results of the "old theory" are not yet fully integrated
into the new theory.

In the writer’s view--which will be argued t length in this paperthe
diiIiculty is due to insufficient appreciation of the concept of a dynamical
system. Control theory is supposed to deal with physical systems, and not
merely with mathematical objects such as a differential equation or a trans-
fer function. We must therefore pay careful attention to the relationship
between physical systems and their representation via differential equations,
transfer functions, etc.

* Received by the editors July 7, 1962 and in revised form December 9, 1962.
Presented at the Symposium on Multivariable System Theory, SIAM, November 1,

1962 at Cambridge, Massachusetts.
This research was supported in part under U. S. Air Force Contracts AF 49 (638)-382

and AF 33(616)-6952 as well as NASA Contract NASr-103.
Research Institute for Advanced Studies (RIAS), Baltimore 12, Maryland.
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To clear up these issues, we need first of all a precise, abstract definition
of a (physical) dynamical system. (See sections 2-3.) The axioms which
provide this definition are generalizations of the Newtonian world-view of
causality. They have been used for many years in the mathematical litera-
ture of dynamical systems. Just as Newtonian mechanics evolved from
differential equations, these axioms seek to abstract those properties of
differential equations which agree with the "facts" oi’ classical physics. It is
hardly surprising that under special assumptions (finite-dimensional state
space, continuous time) the axioms turn out to be equivalent to a system of
ordinary differential equations. To void mthemtical diificulties, we shll
restrict our attention to linear differential equations.

In section 4 we formulate the central problem of the pper:
Given an (experimentally observed) impulse response matrix, how can we

identify the linear dynamical system which generated it?
We propose to call any such system a realization of the given impulse re-

sponse. It is an irreducible realization if the dimension of its state space is
minimal.

Section 5 is a discussion of the "canonical structure theorem" [2, 14]
which describes abstractly the coupling between the external variables
(input and output) and the internal variables (state) of any linear dynami-
cal system. As a immediate consequence of this theorem, we find that a
linear dynamical system is an irreducible realization of an impulse-response
matrix if and only if the system is completely controllable and completely ob-
servable. This important result provides a link between the present pper and
earlier investigations in the theory of controllability and observability
[3-5].

Explicit criteria for complete controllability and complete observability
are reviewed in a convenient form in section 6.

Section 7 provides a constructive computational technique for deter-
mining the canonical structure of a constant linear dynamical system..

In section 8 we present, probably for the first time, complete and rigor-
ous theory of how to define the state variables of a multi-input/multi-output
constant linear dynamical system described by its transfer-function matrix.
Since we are interested only in irreducible realizations, there is a certain
unique, well-defined number n of state variables which must be used. We
give a simple proof of a recent theorem of Gilbert [5] concerning the value
of n. We give canonical forms for irreducible realizations in simple cases.
We give constructive procedure (with examples) for finding an irreducible
realization in the general case.
Many errors have been committed in the literature of system theory by

carelessly regarding transfer functions and systems as equivalent concepts.
A list of these has been collected in section 9.
The field of research outlined in this paper is still wide open, except



perhaps in the case of constant linear systems. Very little is known about
irreducible realizations of nonconstant linear systems. It is not clear what
dditional properties--besides complete controllability and complete ob-
servability--are required to identify the stability type of a system from its
impulse response. Nothing is known about nonlinear problems in this con-
text.

Finally, the writer would like to acknowledge his indebtedness to Profes-
sot E. G. Gilbert, University of Michigan, whose work [5] predates this and
whose results were instrumental in establishing the canonical structure
theorem.

2. Axiomatic definition of a dynamical system. Macroscopic physical phe-
nomena are commonly described in terms of cause-and-effect relationships.
This is the "Principle of Causality". The idea involved here is at least as
old as Newtonian mechanics. According to the latter, the motion of a
system of particles is fully determined for all future time by the present
positions and momenta of the particles and by the present and future forces
acting on the system. How the particles actually attained their present
positions and momenta is immaterial. Future forces can have no effect on
what happens at present.

In modern terminology, we say that the numbers which specify the
instantaneous position and momentum of each particle represent the state
of the system. The state is to be regarded always as an abstract quantity.
Intuitively speakig, the state is the minimM amount of information about
the past history of the system which suffices to predict the effect of the past
upon the future. Further, we say that the forces acting on the particles are
the inputs of the system. Any variable in the system which ca be directly
observed is an output.
The preceding notions can be used to give a precise mathematical

definition of a dynamical system [6]. For the present purposes it will be con-
venient to state this definition in somewhat more general fashion [14].
DFNTON 1. A dynamical system is a mathematical structure defined

by the following axioms"
(D) There is given a state space and a set of values of time 0 at

which the behavior of the system is defined; is a topological
space and 0 is an ordered topological space which is a subset of
the real numbers.

(D) There is given a topological space t of function,s of time de-
fined o (R), which are the admissible inputs to the system.

(D) For any initial time to in O, any initial state x0 in 2;, and any
input u in tl defined for __> to, the future states of the system
are determined by the transition function " X 0 X 0 X 2; -- Z,
which is written as ,(t; to, x0) . This functio is defined
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only for => to. Moreover, any to _-< tl _-< t in O, any x0 in ;, and
any fixed u in 2 defined over [to, tl] 91 (R), the following relations
hold"

(D-i)
(D-ii)

(D-iii)

9u(t0;t0,x0) x0,

u(t2 ;0, X0) u(t.- ;ti,u(tl ;to, X0)).

In addition, the system must be nonanticipatory, i.e.,
v andu von[t0,t] Owehave

if u,

,,(t; to, x,,) ,,,(t; to, xo).

(D4) Every output of the system is a function :0 X 2 -- reals.
(Ds) The functions and are continuous, with respect to the

topologies defined for 2, 0, and t and the induced product topolo-
gies.

In this paper we will study only a very special subclass of dynamical
systems: those which are real, finite-dimensional, continuous-time, and
linear.

"Real, finite-dimensional" means that 2 R" n-dimensional real
linear space. "Continuous-time" means that 0 R set of real numbers.
"Linear" means that is linear on 2 X 2; and f is linear on Z.
By requiring and b to be sufficiently "smooth" functions, we can deduce

from the axioms a set of equations which characterize every real, finite-
dimensional, continuous-time, and linear dynamical system. The proof of
this fact is outside the scope of the present paper [14]. Here we shall simply
assume that every such system is governed by the equations

dx(2.1)
dt

F(t)x + G(t)u(t),

(2.2) y(t) H(t)x(t),

defined on the whole real line - < , where x, u, and y are n, m,
and p-vectors* respectively, and the matrices F(t), G(t), and H(t) are
continuous functions of the time t.
We call (2.1-2) the dynamical equations of the system.
It is instructive to check whether the axioms are satisfied. (D) is obvi-

ously true; we hve R, O R. The state of the system is the vector x.
To satisfy (D.), we must specify the class of all inputs, that is, a subclass
of all vector functions u(t) (u.(t),..., u,(t)). To define t, we shall
assume that these functions are piecewise continuous; this is suiiciently

Vectors will be denoted by small Roman letters, matrices by Roman cpitls.
The components of vector x are xi components of a mtrix A re ai On the other
hand, x1, x, are vectors, nd F.4, FB are matrices. A’ is the transpose of A.
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general for most applications. We have exactly p observations on the system
(the components of the vector y) and by (2.2) they are functions of t, x.
Hence (D) is satisfied. To check (D3), we recall that the general solution
of (2.1.) is given by

(2.:) (t; to, zo) =- z, (t, to)zo + (t, )()u() c,

where (t, r) is the transition matrix of the free differential equation de-
fined by F (t) [4, 7] I’. Since (2.3) is valid for any >= to (in fact, also for
< to), is well defined. Property (D3-i) is obvious. (D.ii) follows from the

composition property [4, 7] of the transition matrix:

(2.4) (t, ) (t, )(, ),

which holds for every set of real numbers t, ’, o-. Indeed, (2.4) is simply
the linear version of (D-ii). (D-iii) is obvious from formula (2.3). The
continuity axiom (D) is satisfied by hypothesis.

Evidently e given by (2.3) is linear on the cartesian product of 2; with
the linear space of vector-valued piecewise continuous functions.
We call a linear dynamical system (2.1-2) constant, periodic, or analytic

whenever F, G, and H are constant, periodic, or analytic in t.
It is often convenient to have a special name for the couple

(t, x) 0 X 2. Giving a fixed value of (t, x) is equivalent to specifying
at some time (t) the state (x) of the system. We shall call (t, x) a phase
and 0 X 2 the phase space. (Recall the popular phrase" "phases" of the
Moon.)
To justify our claim----implicit in the above discussion--that equations

(2.1-2) are a good model of physical reality, we wish to point out that
these equations can be concretely simulated by a simple physical system"
a general-purpose analog computer. Indeed, the numbers (or functions)
constituting F, G, and H may be regarded as specifying the "wiring dia-
gram" of the analog computer which simulates the system (2.1-2) (see, for
instance, [8]).

3. lquivalent dynamical systems. The state vector x must always be re-
garded as an abstract quantity. By definition, it cannot be directly meas-
ured. On the other hand, the inputs and outputs of the system (2.1-2) have
concrete physical meaning. Bearing this in mind, equations (2.1-2) admit
two interpretations"

() They express relations involving the abstract linear transformations
F(t), G(t), nd H(t).

(b) At any fixed time, we take an arbitrary but fixed coSrdinate system

I.e., q, is a solution of d/dt F(t), subject to the initial condition (7, 7)
I unit matrix for all 7.
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in the (abstract) vector space 2. Then the symbol x (x, x) is
interpreted as the numerical n-tuple consisting of the coSrdiuates of the
abstract state vector which is also denoted by x. F, G, and H are interpreted
as the matrix representations of the abstract linear transformations de-
noted by the same letters under (a).
To describe the behavior of a dynamical system in concrete terms, the

second point of iew must be used. Then we must also ask ourselves the
question" To what extent does the description of a dynamical system de-
pend on the urbitrary choice of the coordinate system in the state space?
(No such arbitrariness occurs in the definition of the numerical vectors u,
y since the input and output variables u nd y. are concrete physical quanti-
ties.) This question gives rise to the next definition.

DEFINITION 2. Two linear dynamical systems (2.1-2), with state vectors
x, , are algebraically equivalent whenever their numerical phase vectors are
related for all as

(3.1) (t, ) (t, T(t)x),

where T(t) is a n X n matrix, nonsingular for all and continuously differ-
entiable in t. In other words, there is a 1-1 differentiable correspondece
between the phase spaces 0 2; and 0 ,.
Remark: We could generalize this definition of equivalence to (, 2)
(-(t), T(t)x) where is un increasing function of t. But this involves

distortion of the time scale which is not permitted in Newtonian physics.
Algebraic equivalence implies the following relations between the de-

fining matrices of the two systems"

(t, -) T(t)(t, -)T-(-),
(t) .(t)T-(t) - T(t)F(t)T-(t),

(3.2)
(t) T(t)G(t),

IZI(t) H(t)T-(t).
In general, lgebmic equivalence does not preserve the stability proper-

ties of a dynamical system [7, 9, 10]. For this it is necessry and sufficient
to have topological equivalence" algebraic equivalence plus the condition

(3.3) liT(t) --< c and l]T-(t) =< c,

where c and c are fixed constants, and is the euclidean norm*.
A nonconstnt system may be algebraically and even topologically

equivalent to constant system. The latter case is called by Markus [11]

Let O, 2, and E have the usual topologies induced by the euclidean norm. Then
the product topologies induced on O X 2: and O X are equivalent if and only if
(3.3) holds.
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"kinematic similarity". Moreover, two constant systems may be alge-
braically and topologically equivalent without T(t) being a constant. To
bypass these complications, we propose
DEFINITION 3. Two constant linear dynamical systems are strictly equia-

lent whenever their numerical phase vectors are related for all as (t, 2)
(t, Tx), where T is a nonsingular constant matrix.
Evidently strict equivalence implies topological equivalence.

4. The impulse-response matrix and its realization by a linear dynamical
system.

Sections 2-3 were concerned with mathematics, that is, abstract matters.
If we now take the point of view of physics, then a dynamical system must
be "defined" in terms of quantities which can be directly observed. For
linear dynamical systems, this is usually done in the following way.
We consider a system which is at rest at time t0 i.e., one whose input and

outputs have been identically zero for all =< to. We apply at each input
in turn a very sharp and narrow pulse. Ideally, we would take
(t 0), where is the Dirac delta function, t. is the Kronecker

symbol, and 1 __<= i, j =< m. We then observe the effect of each vector input
u((t) on the outputs, which are denoted by u(t; j). The matrix S(t, to)

[si.(t, t0)] [y(t; j)] so obtained is called the impulse-response matrix of
the system. Since the system was at rest prior to to, we must define
S(t, to) =- 0 for < t0. We also assume, of course, that S is continuous in
tandt0fort >
With these conventions, the output of a linear system originally at rest is

related to its input by the well-known convolution integral"

(4.1) y(t) S(t, v)u(-) dr.

In much of the literature of system theory [12] (and also at times in
physics) formula (4.1) is the basic definition of a system. The Fourier
transform of S is often called "the system function" [13, p. 92].

Unfortunately, this definition does not explain how to treat systems
which are not "initially at rest". Herme we may ask, "To what extent, if
any, are we justified in equating the physical definition (4.1) of a system
with the mathematical one provided by (2.1-2)?"

Suppose that the system in question is actually (2.1-2). Then (2.3) shows
that

S(t, -) H(t)(t, r)G(r), t=> r,
(4.2)

=0, t<r.
The right-hand side of the first equation (4.2) is defined lso for ; then the

left-hand side my be regarded s the "bckwrd impulse response", whose physical
interpreta,tion is left to the reder.
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Thus it is trivial to calculate the impulse-response matrix of a given
linear dynamical system. The converse question, however, is non trivial and
interesting. Whez and how does the impulse-response matrix determine the
dynamical equations of the system?

This problem is commonly called the identification of the system from its
impulse-response matrix.
Having been given an impulse-response matrix, suppose that we succeed

in finding matrices F, G, and H such that (4.2) holds. We have then identi-
fied a physical system that may have been the one which actually generated
the observed impulse-response matrix. We shall therefore call (2.12) a
realization of S(t, r). This terminology is justified because the axioms given
in section 2 are patterned after highly successful models of classical
macroscopic physics; in fact, the system defined by (2.1-2) can be con-
cretely realized, actually built, using standard analog-computer techniques
in existence today. In short, proceeding from the impulse-response matrix
to the dynamical equations we get closer to "physical reality". But we are
also left with a problem" Which one of the (possibly very many) realiza-
tions of S(t, r) is the actual system that we are dealing with?

It is conceivable that certain aspects of a dynamical system cannot
ever be identified from knowledge of its impulse response, as our knowledge
of the physical world gained from experimental observation must always be
regarded as incomplete. Still, it seems sensible to ask how much of the
physical world can be determined from a given amount of experimental
data.
The first clear problem statement in this complex of ideas and the first

results appear to be due to the writer [2, 14].
First of all we note
TIEOEM 1. An impulse-response matrix S(t, r) is realizable by a finite-

dimensional dynamical system (2.1--2) if and only if there exist continuous
matrices P(t) and Q(t) such that

(4.3) S(t, r) P(t)Q(r) for all t, r.

Proof. Necessity follows by writing the right-hand side of (4.2) as
H(t)q(t, 0)(0, v)G(r), with the aid of (2.4). Sufficiency is equally obvi-
ous. We set E(t) O, G(t) Q(t), and tt(t) P(t). Then (t, r) I
and the desired result follows by (4.2).
A realization (2.1-2) of S(t, -) is reducible if over some interval of time

there is a proper (i.e., lower-dimensional) subsystem of (2.1-2) which also
realizes S(t, r).As will be seen later, a realization of S (particularly the one
given in the previous paragraph) is often reducible.
An impulse-response matrix S is stationary whenever S(t, r)
S(t q- o5 r q- r) for all real numbers t, r, and a. S is periodic whenever
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the preceding relation holds for all t, r, and some . An iinpulse-response
matrix is analytic whenever S is analytic in and r; if (4.3) holds, then P
and Q must be analytic in t.
The main result, whose proof will be discussed later, is the following [14]:
THEOREM 2. Hypothesis: The impulse-response matrix S satisfies (4.3)

and is either periodic (and continuous) or analytic.
Conclusions: (i) There exist irreducible realizations of S, all of which have

the same constant dimension n and are algebraically equivalent. (if) If S is
periodic [analytic] so are its irreducible realizations.

Topological equivalence cannot be claimed in general. It may happen
that S has one realization which is asymptotically stable and another
which is asymptotically unstable [15]. Hence it may be impossible to identify
the stability of a dynamical system from its impulse response! This surpris-
ing conclusion raises many interesting problems which are as yet unexplored
[15]. If S is not periodic or analytic, it may happen that the dimension n(t)
of an irreducible realization is constant only over finite time intervals.

In the stationary case, Theorem 2 can be improved [14].
THEOREM 3. Every stationary impulse-response matrix S(t, r) W(t r)

satisfying (4.3) has constant irreducible realizations. All such realizations are

strictly equivalent.
In view of this theorem, we may talk indifferently about a stationary

impulse-response matrix or the dynamical system which generates it--as
has long been the practice in system, theory on intuitive grounds. But note
that we must require the realization to be irreducible. For nonconstant
systems, such a conclusion is at present not justified. The requirement of
irreducibility in Theorem 3 is essential; disregarding it can lead--and has
led--to serious errors in modeling dynamical systems. (See section 9.)

In many practical cases, it is not the weighting-function matrix W(t r)
(see Theorem 3) which is given, but its Laplace transform, the transfer-
function matrix Z(s) [W(t) ]. Then condition (4.3) has an interesting
equivalent form, which is often used as a "working hypothesis" in en-
gineering texts-
THEOREM 4. A weighting-function matrix W(t r) satisfies (4.3) if and

only if its elements are linear combinations of terms of the type te (i O,
1, n 1, j 1, n). Hence every element of the transfer-function
matrix is a ratio of polynomials in s such that the degree of the denominator
polynomial always exceeds the degree of the numerator polynomial.

This result is provedd in [14]. I implies that the realization of an impulse-
response matrix is equivalent to expressing the elements of F, G, and H
as functions of the coefficients of the numerator nd denominator poly-
nomials of elements of Z(s). (See section 8.)

In the remainder of the paper, we wish to investigate two main problems
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arising in the theory sketched above"
(i) Explicit criteria for reducibility.
(ii) Construction of irreducible realizations.
Remark. Elementary expositions of system theory often contain the state-

ment that the operator d/dt (--s) is a "system." Is a it system in the
same sense as that word is used here? The answer is no. To define such a
system rigorously in accordance with the axioms introduced in section 2,
one must proceed as follows. The output of the system, which by definitio
is the derivative of the input, is given by

(3.4) y(t) du(t)
dt

(t, x(t)),

so that at any fixed t, u(t) must be a point function of (t, x(t) ). Therefore
the state space 2; must include the space 2 of functions on which the opera-
tor d/dt is defined. It is simplest to let 2 2. Then 2 is usually infinite
dimensional because 2 is. Thus we define the state x x(t) as the function
u(r), defined for all =< t. The mapping (t; to, xt0) assigns to the function
x0 defined for -<_ to the function xt, which is equal to Xto on =< to and equal
to uont0 r =< t.

In this paper, the finite dimensionality of 2; is used in an essential way,
which rules out consideration of the "system" d/dt in all but trivial cases.

5. Canonical structure of linear dynamical systems. The concept of ir-
reducibility can be understood most readily with the help of the writer’s
"canonical structure theorem" for linear dynamical systems [2, 14].

Before presenting and illustrating this central result, it is necessary to
recall some definitions and facts concerning the controllability and. observ-
ability of linear dynamical systems.

DEFINITION 4. A linear dynamicnl system (2.1-2) is completely control-
lable at time to if it is not algebrtically equivalent, for all >= to, to a
system of the type

(a) dx/dt F(t)x - Fr(t)x + G(t)u(t)
(5.1) (b) dx:/dt F (t) x

(c) y(t) Hi(t)x(t) .- He(t)x(t).
(In (5.1), x and x: are vectors of n and n n n components respec-
tively.)

In other words, it is not possible to find a coSrdinate system iu which the
state variables x are separated into two groups, x (x, x) and
x (Xnl+I,’’’, Xn), such that the second group is not affected either
by the first group or by the inputs to the system. If one could find such a
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FIGURE 1.

coSrdinate system, we would have the state of affairs depicted schematically
in Fig. 1.

Clearly, controllability is a system property which is completely inde-
pendent of the way in which the outputs of the system are formed. It is a
property of the couple F(t), G (t) }.
The "dul" of controllability is observbility, which depends only on

the outputs but not on the inputs.
DEFINITION 5. A linear dynamical system (2.1-2) is completely observable

at time to if it is not algebraically equivalent, for all <= to, to any system
of the type

dxl/dg Fll(g)x1(g) --(5.2) (b) dx2/dt F2(t)x(t) + F2(t)x + G(t)u(t)

(c) y(t) Hl(t)xl(t).

(Again, x is an nl-vector and x is an (n nl)-vector.)
In other words, it is not possible to find a coSrdinate system in which

the state variables xi are separated into two groups, such that the second
group does not affect either the first group or the outputs of the system. If
such a coSrdinate system could be found, we would have the state of affairs
depicted in Fig. 2.
The above definitions show that controllability und observbility are

preserved under algebraic equivalence. These properties are coSrdinte-
free, i.e., independent of the particular choice of basis in the state space.
The equivalence of the present definitions with other more abstract
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FIGURE 2.

definitions of controllability may be found in [4]. As to observability,
we note that the duality relations

(5.3)
(b)

(c)

(d)

t-- to to-- ,
F(t- to) v= F’(to- t’),
G(t- to) :* H’(to- t’),

H(t- to) - G’(to- t’),

transform the system (5.2) into (5.1). Itence all theorems on controllability
can be "dualized" to yield analogous results on observability.

It can be shown that in applying definitions 4-5 to constant systems it is
immaterial whether we require algebraic or strict equivalence [14]. IIence--
as one would of course expect--for constaut systems the notions of com-
plete controllability and complete observability do not depend on the
choice of to.
EXAMPLE 1. A simple, well-known, and interesting case of a physical

system which is neither completely controllable nor completely observable
is the so-called constant-resistance network shown in Fig. 3.

Let Xl be the magnetic flux in the inductor and x2 the electric charge on
the capacitor in Fig. 3, while ul(t) is a voltage source (zero short-circuit
resistance) and yl(t) is the current into the network. The inductor and
capacitor in the network may be time-varying, but we assume--this is the
constant-resistance condition--that L (t) and C(t) are related by:

L(t)/C(t) R= 1 (L(t), c(t) > o).
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x/ L (l) x2 C (t)

-IGURE 3.

The differential equations of the network are

dx/dt -[1/L(t)]x + ul(t),

dx,2/dt -[1/C(t)]x,2 + u(t),

y(t) [1/L(t)]xt [1/C(t)]x2 + u.(t).

If we let

x + x /2,

32-- (Xl-

the dynamical equations become

d2l/dt --[1/L(t)]2 + ul(t),

(5.4) d2/dt [1/L(t)],,

y(t) 2[1/L(t)]22 + u(t).*
Here the state variable 2 is controllable but not observable, while 2: is

observable but not controllable.
For obvious reasons, the subsystem (b) of (5.1) may be regarded as

(completely) uncontrollable, while subsystem (b) of (5.2) is (completely)
unobservable. In view of linearity, it is intuitively clear that it must be
possible to arrange the components of the state vectorreferred to a

Note that this equation does not correspond to (2.2) but to y(t) H(t)x(t)
+ J(t)u(t). This is minor point. In fact, Axiom (D ) may be generalized to’ "(D)"
Every output is a function of t, x(t), and u(t)." This entails only minor modifications
as far as the results and arguments of the present paper are concerned.
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suitable (possibly time-varying) co6rdinate system into four mutally ex-
clusive parts, as follows:

Part (A): Completely controllable but unobservable.
Part (B): Completely controllable and completely observable.
Part (C): Uncontrollable and unobservable.
Part (D) Uncontrollable but completely observable.
The precise statement of this idea is [2, 14]:
THEOREM 5 (Canonical Structure Theorem,). Consider afixed linear dynami-

cal system (2.1-2).
(i) At every fixed instant of time, there is a co6rdinate system in the state

space relative to which the components of the state vector can be decomposed
into four mutually exlusive parts

X (XA, XB, X c, xD),
which correspond to the scheme outlined above.

(ii) This decomposition can be achieved in many ways, but the number
of state variables nt(t), nz(t) in each part is the same for any such
decomposition.

(iii) Relative to such a choice of co6rdinates, the system matrices have the
canonical form

F(t)

F(t) 0

0

G’ t)G( t) | 0

L 0
and

FA(t) FAc (t) F’(t)
F(t) 0

0 Fee(t) FC)(t)
0 0 F))(t)

H(t) [0 H’(t) 0 HD(t)].
In view of this theorem, we shall talk, somewhat loosely, about "Parts

(A), (D) of the system." Thus the system (5.4) consists of Parts
(A) and (D).
The canonical form of F, G, and H can be easily remembered by reference

to the causal diagram shown on Fig. 4.
It is intuitively clear (and can be easily proved) that algebraically

equivalent systems have the same canonical structure.
Unfortunately, the coSrdinate system necessary to display the canonical

form of F, G, and H will not be continuous in time unless n(t), n,(t)
are constants. If these dimension numbers vary, we cannot call the various
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FIGURE 4.

parts of the canonical structure "subsystems." For constant systems this
diiIiculty does not arise. More generally, we have"
THEOREM 6. For a periodic or analytic linear dynamical system (2.1-2)

the dinension numbers nA n, are constants, and the canonical decom-
position is continuous with respect to t.
An illustration of the canonical structure theorem is provided by
EXAMPLE 2. Consider the constant system defined by

-3 -3 0 1
26 36 -3 -25
30 39 -2 -27
30 43 -3 -32

3 3
-2 -1
0 0
0 1

H [-5 -8 1 5].

We introduce new co6rdinates by letting 2 Tx,
where

2 3 0 -2

T 1 1 0 1
--2 --3 0 3
--6 --9 1 6

and
0 3 1 0
1 -2 0 0
3 0 0 1
1 0 1 0

With respect to these new coSrdintes the system matrices assume the
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canonical form"

and

17 TFT-I=

= TG=

2 4 1 --1
0 -1 0 1
0 0 -3 -2
0 0 0 1

0 1

tt HT--- [0 1 0 1].

On the other hand, if we define the new co6rdinates by

3

T= 1
-5
-6

0

T_i__ 1
3
1

then the system matrices become

2

fi= 0
0
0

1
1
0
0

and

4 0 --3
1 0 --1

--7.5 O.5 6
9 1 6

3 1 --0.5
--3 0 0
--3 0 1
--1 1 --0.5

1
--1
0
0

2
1
0
0

1 0
0 1
--3 0
0 1

fl [o ] o ]].

The numerical values of these two canonical forms are different, yet
Theorem 5 is verified in both cases. In the second case the connections from
Part (D) to Parts (A) and (C) are missing. This is not a contradiction since
Theorem 5 does not require that all the indicated casual connections in
Fig. 4 be actually present.
The transfer-function matrix of the system is easily found from the

canonical representation. The co6rdinate transformations affect only the
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internal (state) variables, but not the external (input and output) variables;
consequently the impulse response matrix is invariant under such trans-
formations. We get by inspection:

s+l s-t-1

It would be rather laborious to determine these transfer functions
directly from the signal-flow graph [16] corresponding to F, G, and H.
EXAMPLE 3. A far less trivial illustration of the canonical decomposition

theorem is provided by the following dynamical system, which occurs in
the solution of a problem in the theory of statistical filtering [17]. Let A be
an arbitrary positive function of and define

t/4A
F ta/2A

t2/2A
t4/4A]

G |ta/2A|,
L?/eAJ

lo]0 1
0 0

H= [0 1 0].

We introduce new state variables

where
2(t) ’(t)x(t),

Then

0 0
T(t) 2 -t

0 1

rte/2 1/2
T-’(t) [ o

0

t/2]

t4/4A_ ta/4A_ t’/4A

l(t) T(t)F(t)T-’(t)- 5/’(t)T-l(t) 0 0 1

o o o

d(t) T(t)G(t)

t/2A
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H(t) H(t)T-l(t) It 1,01 11.
Hence the system consists of Parts (B D), with n, nc n, 1.

It is interesting that the canonical decomposition is of constant dimension,
even though the system may be neither periodic nor analytic.
The preceding examples illustrate special cases of a noteworthy general

relationship which exists between the canonical structure of a dynamical
system and irreducible realizations of an impulse-response matrix. The
main facts here are the following:
THEOREM 7. (i) The impulse-response matrix of a linear dynamical system

(2.1-2) depends solely on Part (B) or the system and is given explicitly by

(5.5) S(t, r) H’(t)"(t, r)G’(r),
where ’" is the transition matrix corresponding to

(ii) Any two completely controllable and completely observable realizations
of S are algebraically equivalent.

(iii) A realization of S is irreducible if and only if at all times it consists
of Part (B) alone; thus every irreducible realization of S is completely con-
trollable and completely observable.

Proof. The first statement can be read off by inspection from Fig. 4.
The second statement is proved in [14]. The necessity of the third statement
follows from Theorem 5, while the sufficiency is implied by (ii).

It is clear that Theorem 2 is a consequence of Theorems 5-7.
We can now answer the question posed in section 4 in a definite way:
THEOREM 8 (Main Result). Knowledge of the impulse-response matrix

S(t, r) identies the completely controllable and completely observable part, and
this part alone, of the dynamical system which generated it. This part ("B"
in Theorem 5) is itself a dynamical system and has the smallest dimension
among all realizations of S. Moreover, this part is identified by S uniquely up
to algebraic equivalence.

Using different words, we may say that an impulse-response matrix is

.faithful representation of a dynamical system (2.1-2) if and only if the latter
is completely controllable and completely observable.

Remarlc. It is very interesting to compare this result with Theorem 4 of
E. F. Moore, in one of the early papers on finite automata [26]:
"The class of all machines which are indistinguishable from a given strongly

connected machine S by any single experiment has a unique (up to isomorphism)
member with a minimal number of states. This unique machine, called the re-
duced form of S, is strongly connected and has the property that any two of its
states are distinguishable."

"Indistinguishable machines" in Moore’s terminology correspond in ours
to alternate realizations of the same input/output relation. "Strongly con-
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neeted" in his terminology means completely controllable in ours. "In-
distinguishable states" in our terminology corresponds to states whose
difference, not zero, is an unobservable state in the sense of [3].

Evidently the two theorems are concerned with the same abstract facts,
each being stated in a different mathematical framework.

6. Explicit criteria for complete controllability and observability. The
canonical structure theorem is so far merely an abstract result, since we
have not yet given a constructive procedure for obtaining the co6rdinate
transformation which exhibits the system matrices in canonieM form. We
shall do this in section 7. The meth()d rests on the possibility of finding
explicit criteria for complete controllability and complete observability.
The following lemmas, proved in [4], play a central role:
LEMMA ]. na(t0) -t- n,(to) rank W(to, tl) j’or I1 > lo ,sufficiently large,

where

(6.1) W(t,), h.) *or

(6.2) dW/dto F(to)W + WF’(to) G(to)G’(to), W(t) O.

LEMMA 2. n(t0) -- nD (t0) rank M(to, t_.) for t_ < to suciently
small, where

fro H(6.3) M(to t-l) ’(, t0) (r)H(r)(r, to) dr

or

(6.4) -dM/dto F’(to)M -- MF(to) H’(to)H(to), M(t_.) O.

For constant systems, the preceding lemmas can be considerably im-

proved [4]:
LEMMA 3. For a constant system,

(6.5) n -t- n rank [G, FG, F-G].

LMM 4. For a constant system,

(6.6) nc -t- n, rank [H’, F’H’,..., (F’)-IH’].

EXAMPLE 4. For F and G defined in Example 2, the matrix (6.5) is

3 3 3 3 o 3 3

(6.7)
--2 --1 6 8 2 6 14 22
0 o 12 18 12 24: 36
0 1 4 6 4 8 12 20
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The rank of this matrix is 2, which checks with the fact that n 1 and
n. 1 in Example 2.
The determination of the rank of (6.7), while eleinentary, is laborious.

For practical purposes it might be better to compute W; for instance, by
solving the differential equation (6.2).

In the constant case, there is another criterion of complete controllability
which is particularly useful in theoretical investigations. The most general
form )f this theorem (which may be found in [14]) is complicated; we state
here a simplified version which is adequate for the present purposes:
LEMMA 5. Hypothesis: The matrix F is similar to a diagonal matrix. In

other words, there is a nonsingular coordinate transformation Tx with
the property that in the new coordinate system F has the form

? TFT- I I

where I is a q >< q. unit matrix,

i--=1

0

}r Iq,

and the matrix G has the form
0(’) q rows

5= TG=

L (r)J q rOWS.

Conclusion" The system is completely controllable and only if
(6.8) rank () q, rank ((r) q"

We leave it to the reader to dualize this result to complete observability.
EXAMPLE 5. Consider the special case q q 1 of Lemma 5.

The eigenvalues of F are then distinct. If condition (6.8) is satisfied, every
element of the one-column matrix is nonzero; by a trivial transformation,
all of these elements can be made equal to 1, without affecting . Thus we
can choose a coordinate system in which F, G have the representation:

(6.9) 17 (X hi i j), d

0 X
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This is the canonical form of Lur’e [18]. It is closely related to the partial-
fraction expansion of transfer functions. To illustrate this, consider the
1 1 transfer-function matrix"

s+2

This transfer function is realized by the system"

(6.10) F

(6.11) G

0 010 --3 0
0 0 --4

[11
(6.12) H [-- --]

s+3 s+4"

which is in the canonical form of Lur’e.
By Lemma 5, (6.10-11) is completely controllable; by the dual of Lemma

5, (6.1.0-12) is completely observable.
We can double-check these facts by means of Lemmas 3-4. For (6.9)

the matrix (6.5) is

(6.13)

where the he are the diagonal elements (= eigenvalues) of F in (6.9).
But the determinant of (6.13) is the well-known Vandermonde deter-
minant. The latter is nonzero if and only if all the Xi are distinct, which is
what we have assumed.

7. Computation of the canonical structure. We show now how to deter-
mine explicitly the change of coSrdinates which reduces F, G, H to the
canonical form. We consider only the constant case of (2.1-2). The com-
putations are elementary; it is not necessary to diagonalize the matrix F
or even to determine its eigenvalues.
The procedure is as follows:
(a) We compute the controllability matrix W W(0, 1)* given by

* It can be shown [4, Theoren 10] that in the constant case one may choose any
> to in Lemna 1.
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(6.1);for instance, by solving the differential equation (6.2). Then we find
a nonsingular matrix T such that

mtrices of pproprite size. Clemqy n n.4 -t- n is the number of con-
trollble state vribles.
The matrix T defines the change of coSrdintes

(7.2) x T;

in terms of the new coSrdinates, the system matric are

(7.3) T-FT, ( T-1G, I HT, E.

(7.4) 2 ,F 0 /?J’
() and tt Ill I?].

This decomposition is trivial (and therefore omitted) if n n, i.e., when
the system is completely controllable.

(b) Next we consider the two subsystems defined by

1, (., and ;
(7.5)

I?, 0, and B.
We compute the observability matrices (0, 1) and (0, 1
given by (6.3) for both of these subsystems. Then we determine two non-
singular matrices 1, 02 such that

(7.6) (1)’]101 ---1--- 0]InB

0](7.7) 02),/0.22 /?2
I,,,

These results define another change of coSrdinates

0

One or the other of these trmsformtions is superfluous if n n or

nd n hi.,

After the coSrdinate changes (7.2) and (7.8), we obtain the following
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matrices

(7.9)

B FBB
-IF,?

xa 0

FAc FAd

0 Fda

/. llV [0 H" 0 Ha],

Clearly, n, is the number of state variables which are both controllable
and observable. But, in general, na nD and nc > n(.

(c) It remains to transform the element /7"" into 0, if this is not already
the case. (If /7"c 0, then nc nc, na n, and (7.9) has the desired
canonical structure.)
We consider the subsystem

(7..0) *
FBB

0
d t*

The corresponding observability matrix given by (6.3) is

21*(0, 1) * (Q nonnegative definite.)

The upper lefg elemeng of * is I, in view of (7.9); all we know aboug he
oher elements is their symmetry properties.) Lein.g

we find that

?*)’YI*?* *
InB

0

where R Q A’A is a symmetric, nonnegative-definite matrix.
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Now let if** be a nonsingular matrix such that

(?**),**?**

where n rank R. Let - *lY**. Since * and lY** are upper triangular
relative to the partitioning in (7.10), so is , which will take /Y* into the
upper triangular form

Fee

where nc n ne. But these transformations decompose /* into a
completely observable and an unobservable part. Hence Fee Fee O.
Moreover,

*=[H" 0]= IN" 0 H1
THEOREM 9. The explicit transformation which talces the constant matrices

F, G, and H into the canonical form required by Theorem (5-iii) is given by
X --’-) ?--1_--1--1X. We partition

F.C= [FAC
and partition

Then we define n) n + n and find
i,,’= [F- F],

F"= [Fee F’],

F(:" [Fc F],

Fdd

Hv= [H

8. Construction of irreducible realizations.
Now we give an expliei procedure for the construction of an irreducible

realization of a weighging-funetion matrix W( r). In view of Theorem 7,



part (iii), we can do this in two stages:
(i) We construct a realization of W, then
(II-A) we prove, using Lemmas 1-5, that the resultant system is com-

pletely controllable and completely observable, hence irreducible; or
(II-B) we carry out explicitly the canonical decomposition and remove

all parts other than (B).
Instead of the weighting-function matrix W, it is usually more con-

venient to deal with its Laplace transform Z.
Let us consider the problem with Method A in order of increasing diffi-

culty.
Case 1. m p 1. This is equivalent to the problem of simulating a

single transfer function on an analog computer. There are several well-
known solutions. They may be found in textbooks on classical servo-
mechanism theory or analog computation.
Without loss of generality (see Theorem 4) we may consider transfer

functions of the form

(8,1) ZlI(8) a, s A- A- al N(s)
s" + b, s"- + + b D(s)

where the am,’", a, b,..., bl are real nmnbers. Of course, at least
one of the a+ must be different from zero. We assume also that the numerator
N(s) and denominator D(s) of zn(s) have no common roots.

There are two basic realizations of (8.1). See Figs. 5-6, where the stand-
ard signal-flow-graph notation [1.6] is used. In either case, one verifies al-
most by inspection that the transfer functions relating y to u are indeed
given by Zn.

In Fig. 5, the system matrices are

(s.2) F

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
bl b2 b: b- b

(8.3)

0
0

(8.4) H [a ax a,_ a,].
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Ul Xn

bl

FIGURE 5.

In Fig. 6, the systen matrices arc

(s.5) F

0 0 0 0 --bll1 0 0 0 --b2

0.. 1.. 0.. 0.. --b.. j,0 0 0 1 --b,

(8.6) G

and

I1]

(8.7) H t0 0 0 ].

It is very easy to check by means of (6.5) and (6.6) that the system
(8.2, 3) is completely controllable and (8.5, 7) is completely observable.
However, if we attempt to check the controllability of (8.5, 6) by means

of (6.5) we get a matrix whose elements are complicated products of the
coefficients of N(s) and D(s). To prove that the determinant of this matrix
does not vanish, we have only one fact at our disposal" the assumption that
N(s) and D(s) have no common roots. Guided by this observation, we find
that the following is true"
LEMMA 7. Suppose F has the form (8.5) and G has the form (8.6). Then (i)

we have the relation

(s.s) K(F, G) [G FG I,"-GJ N(F),
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-b

and (ii) the polynomials N(s) and D(s) have no root in common if and only if
det K(F, G) O.
The main fact to be proved is (ii), for then the complete controllability

of (8.5, 6) follows by Lemma 3. A straightforward way of establishing (ii)
is to transform the standard Euler-Sylvester determinantal criterion
[19, p. 84] for the nonexistence of common roots of N(s) and D(s) (the
so-called resolvent of N(s) and D(s)) into the form (8.8). This can be
easily done, but the details arc not very transparent. Therefore we prefer
to give another

Proof. Let el, i 1, n, be the set of n-vectors in which the j-th
component of ei is a.. Since F is given by (8.5), we see that e+l Fe,
1 =< n 1, and K(F, el) Iv1, e2, en] I. Hence K(F, e)
K(F, F-’el) F-IK(F, el) -F when I =< i _-< n. Then (8.8) follows
by linearity.

Let [A], i 1, n denote the eigenvalues (not necessarily distinct)
of a square matrix A. Then

get K(F, G) II II
i1 i=l

where the second equality follows from (8.8) by a well-known identity in
matrix theory. Thus det K(F, G) 0 if and only if N(Xi[F]) 0 for some
i; that is, when an eigenvalue of F is a root of N(X). Since the eigenvalues
of F are roots of D(h), this proves (ii).*

It is interesting that (8.8) provides a new representation for the re-

solvent, which is preferable in some respects to the Euler-Sylvester deter-
minant. The latter is a 2n X 2n determinant, whereas det K(F, G) is n X n.
The complete observability of (8.2, 4) is proved similarly.
The systems given by (8.2-4) and (8.5-7) are duals of one another in

The present proof of Lemma 6 was suggested by Drs. John C. Stuelpnagel and
W. M. Wonham of RIAS.



LINEAR DYNAMICAL SYSTEMS 179

the sense defined by (5.3). Fig. 6 is a reflection of Fig. 5 about the vertical
axis, with all arrows reversed.
A third type of realization in common use is obtained from the partial-

fraction expansion of z11(s) (see Example 5). Note, however, that this
requires factorization of the denominator of zl.(s), whereas the preceding
realizations can be written down by inspection, using only the coefficients
of z.(s).
These considerations may be summarized as the following result, which

is a highly useful fact in control theory"
THEOREM 10. Consider a linear constant dynamical system with m p 1,

which is completely controllable and completely observable. Then one may
always choose a basis in the state space so that F, G, H have the form (8.2-4) or

(with respect to a different basis) (8.5-7).
Proof. Let (8.1) be the transfer-function matrix of the given dynamical

system. By Theorem 8, the given system is an irreducible realization of
(8.1). So are the systems specified by (8.2-4) and (8.5-7). By Theorem
(7-ii), all three systems are algebraically equivalent and by constancy
(Theorem 3) they are even strictly equivalent.
Extensions of this theorem may be found in [14]. For an interesting

application to the construction of Lyapunov functions, see [25].
The procedure described here may be generalized to the non-constant

case. Assuming the factorization (4.3) of S(t, r) is known (with
m p 1), Batkov [20] shows how to determine the coefficients of the
differential equation

(8.9)
dny/dtn - bn -1

y/a + - b(t)y

an(t)dn-lul/dt-1 -- + al(t)u.

Laning and Battin [21, p. 191-2] show how one converts (8.9) into a sys-
tem of first-order differential equations (2.1) with variable coefficients.
We shall leave to the reader the proof of the irreducibility of the realization
so obtained.

Case 2-a. m 1, p > 1. We have a single-input/multi-output system.
We can realize Z(s), without factoring the denominators of its transfer
functions, by the following generalization of the procedure given by Fig. 5
and (8.2-4).

First, we find the smallest common denominator of the elements of Z(s).
(This can be done, of course, without factorization.) Z(s) assumes the form

z(s)

Then the following dynamical system provides an irreducible realization
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of Z(s): F and G are as in (8.2-3), while H given by (8.4) is generalized to

-all aln1
Lapl

Complete controllability is trivial; complete observability is established
by a straightforward generalization of Lemma 6.

In this case we form p linear functions of the state, rather than merely
one s in Fig. 5.

Case 2-b. m > 1, p 1. We can realize this multi-input/single-output
system nalogously to Cse 2- by generMizing the procedure given by
Fig. 6 nd (8.5-8.7). Let us write the elements of Z(s) in terms of their
smallest common denominator"

n--I
aimanl S + a.. a s + +z(s)

s + b,s’- + + b s + i,, s,- . b"
Then the desired irreducible realization consists of F ad H as defined
by (8.5-6), while

G__

[..anl

This case is the dual of Case 2-a.
Even in Case 2, it is impractical to give a general formula which ex-

presses the coefficients of F, G, and H in terms of the coeificients of the
transfer functions in Z(s) if the denominators are not all the same. When
we pass to the general case, determination of F, G, and H often requires
extensive numerical computation.

Case 3. m, p arbitrary. Here Method (A) is very complicated if any
transfer function in Z(s) has multiple poles [1.4]. In most practical applica-
tions, however, such complications are of no interest,. Ruling them out,
E. G. Gilbert gave an elegant and relatively simple solution [5].

Let sl, Sq be distinct complex numbers corresponding to the poles
of all the elements of Z(s). Assume that all poles are simple. Then

R(]) lira (s s)Z(s), .1, ..., q

is the k-th residue matrix of Z(s). If se =Sk, then R(se) (s), where the
bar denotes ghe eomplex eonjugage. In erms of ghe residue magriees, ghe

weighting-funegion magrix W() corresponding go Z(s) has ghe explieig form

w(t) -[z()] ().

We have then"
THEOREM ]1. (Gilbert). Hypotheses: No element of the transfer-function
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matrix Z(s) has multiple poles. Z(s) has a total of q distinct poles 81. s
with corresponding residue matrices R (1), R q

Conclusions: The dimension of irreducible realizations of Z s is
q

(8.11) n r where r rank R(]).
k=l

(ii) Write

(8.12) R(k) H(k)G(lc), lc 1,..., q,

where H(lc) is a p X r matrix and G(]c) is an r X m ’matrix, both of ranlc rl
Then Z s has the irreducible realization

81 Irk 0

(8.13) F

0 sq Irq

IG(I)1((s.,) L(;:’q)
and

(8.15) H IN(l) H(q)].

(It r X r unit matrix),

Proof. This is one of the main results in [5]. With the aid of machinery
developed here, we can give a shorter (though more abstract) demonstra-
tion. The factorization (8.1.2) is well known in linear algebra. We give in the
Appendix various explicit formulae (which are easily machine-computable)
for G(lc) and H(/c). Applying Lemma 5 shows that the dynamical system
defined by (8.13--15) is completely cotrollable and completely observable.
Hence it is irreducible, which implies formula (8.11). By elementary changes
of variables, (8.13-15) can be transformed into matrices which have only
real elements.
A serious disadvantage of Method (A), as expressed by Theorem 11,

is that the denominators of the transfer functions in Z(s) must be factored
in order to determine the poles. This is not easily done numerically. More-
over, the residue matrices R(/c) corresponding to complex poles are com-
plex, which makes the factorization (8.11) more complicated (see
Appendix).
Now we turn to Method (B). This method does not require computation

of eigenvalues, and it is not bothered by multiple poles. This is a decided
advantage itx numerical calculations. On the other had, the method is not
convenient for simple illustrative examples. Nor is it possible to display the
elements of F, G, and H as simple functions of the coefficients in z(s).
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An easy way of realizing Z(s) (without guaranteeing irreducibility) is
the following. Let ci be the number of distinct poles (counting each pole
with its maximum multiplicity) in the i-th row of Z(s), and let i be the
number of poles in the i-th column. Then the maximum number no of
state variables required to realize Z(s) by repeatedly using the scheme
given under Case 2-a or 2-b is

no= min o, i
As before, we can determine the a and Bi without factoring the transfer
functions of Z(s). There is in general no simple way in this method to de-
termine the dimension n N n0 of irreducible realizations without performing
the computations outlined in Section 7.
The two methods are best compared via an example. This example must

be of fairly high order, since we wish to provide accurate numerical checks.
EXAMPLE 6. Consider the transfer-function matrix

3(s+3)(s+5) 6(s+l) 2s+7 2s+5
(s+l)(sW2)(s+4) (sW2)(s+4) (sW3)(s+4) (sW2)(s+3)

2 1 2(s--5) 8(s+2)
Z(s)=

(s+3)(s+5) (s+3) (sW1)(s+2)(s+3) (sW1)(sW3)(s+5)

2(s+7s+18) 2s 1 2(Ss+27s+34)
(s+l)(s+3)(s+5) (s+l)(s+3) s+3) (s+l)(s+3)(s+5)

Applying Method (A) first, we find that the residue matrices are:

R(1) 0 4 1 r 3.
1 0 3

R(2) 0 0 --6 0 r 2.
0 0 0 0

R(a) 1 1 2 2 ra 2.- - 1 1

-0.g 9 1 0
R(4) 0 0 0 0 r 1.

0 0 0 0

R() -1 0 0 r= 1.
2 0 0

Thus 9.
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Employing the procedure given in the Appendix, we find the following
factors for matrices R(I) (the products are accurate up to four places beyond
the decimal point)"

8.0000 0.0000 0.0000]
H() |o.oooo . o.oooo|,

L3.0000 0.7276 3.0774_]

[1.0000
a 1 |0.0000

ko.oooo
,.ooo o.oooo

H(2) 0.0000 .0000
0.0000 O.O000_J

0.0000 0.0000 0.0000J0.0000 0.9701 0.2425
0.3249 -0.2294 0.9175

G(2) 1-0"8182 -0.5455 0.0000 0.18181.0.0000 0.0000 -1.0000 0.0000

1.3416 0.4472 ]H(3) 3.1305 --0.4472
0.0000 4.4721

0.2236 0.6708 0.6708]G(3)
-0.6708 -0.6708 0.2236 0.22363;

F9.06927
H(4) |o.ooool, a(4) [--0.0,551. 0.9924 0.1103 0.0000];

LO.OOOOj

0.0000
g(a) -a.a a(,) [o.a. o.oooo o.oooo o.7].

6.3246

Using these numerical results, we find that the dynamical equations of the
irreducible realization are given by

1
0
0
0

F= 0
0
0
0
0

0 0 0 0 0 0 0 0-]
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0 /
0 0 0 0 0 0 4 O|
0 0 0 0 0 0 0 5
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[-8.oooo o.oooo -I. =/o.oooo o.oooo
3.0000 0.0000 6.3246 _J

1.0000
0.0000
0.0000
--0.8182
0.0000
0.2236
--0.6708
--0.0551.
0.3162

0.0000 0.0000
4.1231 0.0000
0.7276 3.0774

0.0000 0.0000
0.0000 0.9701
0.3249 --0.2294
--0.5455 0.0000
0.0000 1.0000
0.2236 0.6708
0.6708
0.9924 0.1103
0.0000 0.0000

5.5000 0.0000 1.3416
0.0000 6.0000 3.1305
0.0000 0.0000 0.0000

0.0000
0.2425
0.9175
0.1818
0.0000
0.6708
0.2236
0.0000
0.9487

0.4472
-o.4472
4.4721_

Now we apply Method (It). Virst of all we note that al a 4, aa 3,
while # 5, .., a 4 (see p. 181). Hence it is best to choose for the
preliminary realization three structures of the type discussed under Case
2-b. This will require no p(a + a + a) 11 dimensions.

Next, we find the least common denominator of the rows of Z(s). See
Fig. 7.

2(s s 2)

9s 25s 15

F(n3IE 7.

The desired realization of Z(s) can be read off by inspection from Fig.
7, using (8.5) and (8.6)"

0 0 0
0 0

0 0
0 0 1.

-24

0 0
-35
-10

0 0 0 -30
1 0 0 -61

0 0
0 1 0 -41.
0 0 -11

0 0 --15
0 0 1 0 --23

0 1 --9
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135 18 14 20
117 42 25 33
33 3.0 13 15
3 6 2 2

4 10 50 32
6 17 20 32
2 8 2 8
0 1 0 0

36 0 5 68
14 --10 6 54
2 --2 1 10

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

H= 0 0 0 0 0 0 1 0 0 0

By virtue of its construction, this system is completely observable but
we cannot tell by inspection whether or not it is completely controllable.
(From the results obtained above with Method (A), we know that the sys-
tem is not completely controllable since 11 no > n 9.) Therefore the
canonical decomposition may contain Parts (B) and (D).
To see what the dimensions of these parts are, we compute numerically

the decomposition of the system into completely controllable and uncon-
trollable parts according to the method described in Section 8. These cul-
culations involve only the matrices F and G, but the resulting transforma-
tions must be applied also to the matrix H.

-0. 331,6 0.1182 0.01[[) -0.0299 0.0097 -0.0001 -0.0663 -0.0113 0.0000 0.0000 0.83]9

0.2455 -0.2029 -0.0119 0.0268 -0. 0101 0.0000 O.07 O. 0120 O.O001

-0.8333 -0. 890 -O.102J 1.0p59 -0.2290 -0.0009 -0.9998 0.027 -0.0120

-0.2943 O. 2032 O. 0361 O. 0022 -0.0610 -0.0044 O. 1773 -0.0969 O. 0194

-0.8896 0.8321 0.188 O. 4999 -0. 4287 -0.0279 1.1199 0.0024 O. 0089

0.2477 i. <)97 2.0439 -0. 5777 -0.9689 -0.4969 -0.4046 O. 97 0.0199

-o, z98 o.o49 o.ooo9 -o.o32+/- o.059 0.0016 -o. 292 -o.o92 -o.oo+/-o

i.694 -o.o29o o.1114 1.649 -o.4239 -0.0196 0.4o97 -o.o48o -o.oo4o

-o.2787 -0.6894 2.46o4. 2.46o4 -1.98o -o.28Ol o.8992 o.8863 -0.2649

o. 0oo0 o. 7189

2.9469

i. 6479 0.8726

i. 1882 2.9962

-462.2221 -73.0068

o. oooo o. 4698

-29.877 -2.19i

-7].0.9771 -32.0706

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0."’,"2 0.0003

O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0401 O. 299

i0

]i’lGURE 8.
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G

i. 2011 -0.7886 -0.3459 -0. 320

i. 6822 O. 6039 O. 394 O. 474

-1.7962 0.8640 2.387 -1.7927

-0.1683 -0.2420 2.2981 O. 40-)

-0.0665 0.9596 1.4137 2.7344

1.0412 ]-.2734 m.800 -2.9

-0.1117 -0. 46 -0.0977 i..3 -2.8589 .9 -0.

-2.876 -1.7637 0.9281 -2.5137

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

x i0

-0.2928

0599
--I0.4076 0.0160 -0.053 0.0141 0.0000 -0.0981 -0.0167 -0.0001 0.0000 i. 0000

0.0023 -0.0116 -0.0169 0.0373 0.0022 -O.08i) -0.0033 -0.0007 1.0000 0.0000

0.2173 0.0161 0.0394 -0.0603 -0.0039 0.6736 0.0178 0.0024 0.0000 0.000_

FGUE 9.

The final results may be seen in Figs. 8-9, which give the matrices F, G,
and/. Elements in the lower left-hand corner of # should be exactly zero.
In fact, they are zero to at least the number of digits indicated in Fig. 8.
To check the accuracy of these two irreducible realizations of the transfer

function matrix on p. 181, we have computed the corresponding weighting-
function matrices W(1) (t) and W(2) (t). The equality W(1) (t) W(2) (t)
was found to be correct to at least four significant digits.

9. Other applications to system theory. The literature of system theory
contains many instances of errors, incomplete or misleading solutions of
problems, etc., which can be traced to a lack of understanding of the issues
discussed in this paper. This section presents some cases of this known to the
writer; other examples may be found in the pper of Gilbert [5].
Analog computers. According to Theorem 8, a linear dynamical system

(2.1-2) is a "faithful" realization of an impulse-response matrix if and only
if it is irreducible. Suppose the dynamical equations (2.1-2) are programmed
on an analog computer. (See [8].) Then it is clear from Theorem 8 that the
computer will simulate the impulse-response matrix correctly if and only if a
minimal number of integrators are used. Otherwise the system programmed
on the analog computer will have, besides Part (B), t least one of the
Parts (A), (C), or (D). Since the impulse-response matrix determines
Part (B), and that alone, the nature of the redundant parts will depend not
on the impulse-response matrix but on the particular method used to ob-
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rain the dynamical equations. It should be borne in mind that the canonical
decomposition is an abstract thing; usually it is not possible to identify the
redundant integrators without a change of variables.
The writer is not aware of any book or paper on analog computation

where this is explicitly pointed out. But the facts of life seem to be well
known (intuitively) to practitioners of the analog art.
That redundancy in the number of integrators used can cause positive

harm is quite clear from the canonical structure theorem.
EXAMPLE 7. Let the simulated system consist of Parts (A) and (B) and

suppose that Part (A) is unstable. Because of noise in the computer, Part (A)
will be subject to perturbations; they will be magnified more and more,
because of the instability. As long as assumptions of linearity hold exactly,
the unstable (A) component of the state vector will not be noticed, but
soon the computer will cease to function because its linear range will be
exceeded.
Lr’e canonical form. In his book on the Lur’e problem, Letov implies

[18; equation (2.4) and (2.23)] that every vector system

(9.1) dx/dt Fx + g. ( scalar)

can be reduced o the canonical form

(9.2) dxi/dt Xx Jr- r, i 1, n

whenever the eigenvalues X of F are distinct. Since (9.2) is completely
controllable, this assertion, if true, would imply that (9.1) is also com-
pletely controllable, which is false. In fact, the system defined by

is obviously not equivalent to

whenever X g.

In examining the derivation originally given by Lur’e for his canonical
form [27; Chapter 1, 2-3], it is clear that the last step before equation (3.5)
is valid if and only if det [H(X)] - 0 (in the notation of Lur’e [27].) It is
easy to show that this condition is equivalent to complete controllability,
whenever the eigenvalues of F are distinct.. Unfortunately, the condition
det [H(X)] 0 was not emphasized explicitly by Lur’e [28] in the original
publications.
We may thus conclude that when F has distinct eigenvalues and there is a
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single control variable, the Lur’e-Letov canonical form exists if and only if the
pair IF, g is completely controllable.

It is interesting to note that (9.3) can be transformed into (9.4) when
}, ; in other words, when the eigenvalues are not distinct the Lur’e
canonical form may exist even if the system is not completely controllable.

Cancellations in the transfer-function. When a mathematical model is de-
rived from physical principles, the equations of the system are in or near
the form (2.1-2). Regrettably, it has become widespread practice in system
engineering to dispense with differential equations and to replace them
by transfer functions Z(s). Later, Z(s) must be converted back into the
form (2.1-2) for purposes of analog computation. In the process of algebraic
manipulations, some transfer functions may have (exactly or very nearly)
common factors in the numerator and denominator, which are then can-
celed. This is an indication that a part of the dynamics of the system is not
represented by the transfer function.
Such cancellations are the basic idea of some elementary design methods

in control theory. These methods do not bring the system under better
control but merely "decouple" some of the undesirable dynamics. But then
the closed-loop transfer function is no longer a faithful representation of the
(closed-loop) dynamics. Stability difficulties may arise. Similar criticisms
may be leveled against the large, but superficial, literature on "noninteract-
ing" control system design.
EXAMPLE 8. Consider the system defined by the matrices

(.%) F= , 0 a= H=[-2 . 0].
--2 0 2 0.5

The transfer function relating y to ul is the sum of two terms"

y(s) x(s) x:(,)
(.)

-: +
2 s

(,.() +s-2s’- 5s-- 6 s-- 2s- 5s-- 6

(s- 2) 1
(s -t- 1)(s 2)(s -t- 3) (s + )(s + 3)"

Thus, by cancellation, the transfer function is reduced from the third to
the second order. The system has an unstable "natural mode" (correspond-
ing to sa 2) about which the transfer functions gives no information.

-Using (6.5) we see that the system (9.5) is completely controllable.
By Theorem 5, the system cannot be completely observable: n 2 from
(9.6) and Case 1, section 8. The canonical structure consists of Parts (A)
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and (B). In canonical co6rdinates the system matrices can be taken as

-1 0 0 1
0 -3 0 4 [0.5 -0.5 0].
0 0 2

We can easily calculate the change of coSrdinates

4---- Tx

by the method of partial fractions discussed in [8]. First we find T-1, then T.
The results are

--9 4 T --1 2
3 L o 6 -1 4 2

Loss oj" controllability and observability due to sampling. Consider a single-
input/single-output constant linear system. Suppose the output is observed
only at the instants kT (It integer, T > 0), and that the input is
constant over the intervals kT =< (It q- 1 )T. This situation is commonly
called "sampling"; it arises when a digital computer is used in control or
data processing. T is the sampling period. We can regard such a setup as a
discrete-time dynamical system. We define here 0 (Axiom (D1)) as the
set of integers and replace (2.1) by a difference equation. All theorems carry
over to this situation with small modifications.
The analysis of discrete-time systems by conventional techniques requires

the computation of the so-called z-transform of Z(s) [22]. The analysis
using z-transforms then proceeds in close analogy with analysis based
on Laplace transforms.
A constant linear system which is completely controllable and completely

observable will retain these properties even after the introduction of sam-
pling if and only if [4!

(9.7) Res Rest. implies Im (s s) qr/T

where i, j 1, n and q positive integer.
If this condition is violated (the sampling process "resonates" with the

system dynamics) then cancellations will take place in the z-transform.
The z-transform will then no longer afford a faithful representation of the
system, so that if (9.7) is violated, results based on formal manipulation of
z-transforms may be invalid.

This point is not at all clear in the literature. True, Barker [23] has drawn
attention to a related phenomenon and called it "hidden oscillation."
The textbooks, however, dismiss the problem without providing real insight
[22, 5-3; 24, 2.13].
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A practical difficulty arises from the fact that near the "resonance"
point given by (9.7) it is hard to identify the dynamical equations ac-
curately from the z-transform. Small numerical errors in the computation.
of the z-transform may have a large effect on the parameters of the dynami-
cal equations.
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APPENDIX
Factorization of rectangular matrices. Given an arbitrary, rel, p X m

matrix R of rank q <= rain (m, p). We wish to find a p X q mtrix H nd
a q X m mtrix G, both of rank q, such that R HG. The existence of
H and G follows lmost immediately from the definition of rank. We de-
scribe below constructive procedure for determining H and G numerically
from numerical values of R.

Let p =< m. Form the p X p matrix S RR’.
As is well known, there exists nonsingulr matrix T such that

(A-l) TRR’T’ TST’ E,

where precisely q diagonal elements of E re 1, 11 other elements re 0.
T cn be clculated by steps similar to the gussin elimination procedure.
Compute the generalized iaverse R (in the sense of Penrose [4]) of R.

R is n m X p mtrix.
Using the properties of R ([4]) we obtain

(A-2) R RRR RR’R’ SR’ T-]T-I’R’ (T-E) (T-1E)’R’.
Now T-1E is a matrix which contains precisely p q zero columns. De-
leting these columns, we obtain p X q matrix (T-I’) H. Similarly,
deleting p q zero rows from (T-1E)’R’ (RT-1E) we obtain a m X q
matrix G’ (RT-E). Evidently R HG. Since the ranks of H nd G
are obviously less than or equal to q, both ranks must be exactly q for other-
wise rank R q, contrary to hypothesis.

Alternately, let T, U be nonsingular matrices such that

TRU E;
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fhen

(A-3) R

is the desired decomposition. However, the computation of (A-3) may
require more steps than that of (A-2).

Suppose now that R is complex. Then S R/’ RR* A + iB is
complex hermitian; it corresponds to the 2n )< 2n nonnegative matrix

(A-4) =I-BA AB1
whereA A’ and B -B’.Infaet, ifz z + iy, the hermitian form
z*RR*z (which is real-valued) is equal to the quadratic form

As is well known, there exists a nonsingular complez matrix T such that
TST* E. If 7’ (7 -5- iV, i-t, follows further tha

U A B U’ 0

Hence the determination of the complex n X n matrix has been reduced
to the determination of a real 2p X 2p matrix. Similar remarks apply to
the calculation of R. Thus the problem of factoring complex p m matriees
can be embedded in the problem of factoring real 2p X 2m matrices.
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OITIMIZATION AND CONTROL OF NONLINEAR
SYSTEMS USING THE SECOND VARIATION*
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Abstract. A feedback control scheme is described that maximizes a terminal quan-
tity while satisfying specified terminal conditions, in the presence of small disturb-
ances. The scheme can also be used in a rapidly converging computation technique
to find exact solutions to the nonlinear two-point boundary value problems occurring
in the calculus of variations. The scheme is based on a linear perturbation from
nominal optimum path and, as such, involves the second variation of the calculus
of variations. A simple analytical example is given for thrust direction control to
place a vehicle in orbit. Numerical examples of both the control scheme and the
optimization technique are given for a lifting vehicle re-entering the earth’s
mosphere at parabolic speed.

1. Introduction. The necessary conditions for the control program of a
nonlinear system to maximize a terminal quantity while satisfying speci-
fied initial and terminal conditions were set forth in [1]. Numerical com-
putation schemes for determining such extremM control programs were
described in [1, 2, and 3]. These control programs are open-loop programs;
even slight changes in the initial or final conditions require a new compu-
tation of the entire control program. In this paper small changes in the
initial and/or final conditions from nominal values are considered which,
it is assumed, require only small changes in the control program to preserve
optimality. Using the second variation, this results in a linear feedback
control scheme or a linear interpolation, computation scheme, very similar
to the one proposed in [1]. In fact, the second variation provides a quadratic
approximation to the terminal quantity being maximized and the differen-
tial equations describing perturbations about the nominal optimum path
are linear with time-varying coefficients. Such linear systems with quad-
ratic performance indices have been treated extensively in recent years [see,
for example, 4 and 5]. An interesting feature of the present scheme is that
the weighting matrices in the quadratic performance index are determined
as second partial derivatives of the variational Itamiltonian and the termi-
nal quantity being optimized, evaluated on the nominal optimum path
(see Appendix A).
The control scheme and the optimization technique can be extended to

* Received by the editors March 22, 1962 and revised February 14, 1963.
Mechanical and Mathematical Sciences Laboratory, Lockheed Missiles and

Space Co., Palo Alto, California.
: Space and Information Systems Division, Raytheon Co., Bedford, Mass.
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include inequality constraints on the control and/or state variables based
on the work in [6].

Admittedly, many of the operations involved in obtaining the results in
section 3 are purely formal; however, with care, it is believed that these
steps are justifiable with the assumptions made. Furthermore, these
methods have been extensively tested on a number of practical problems.
During the period from submission of the paper to revision for publica-

tion, Kelley [7] has presented similar results for the control problem.

2. A neighboring optimum control scheme. The control scheme proposed
is identical in form to the one proposed in [5]. The only difference lies in
the determination of the matrix of time-varying gains (A-matrix) used
to multiply the state variable error vector to produce the control variable
deviation vector.

Let the differential equations describing the system be

(2.1) 2 f(x, u, t),

where x is a column vector of n state variables, f is a column vector of n
known functions, u is a column vector of m control variables, is the inde-
pendent variable (often time), ,nd (’) d( )/dr.
A set of initial conditions x(to) and a set of control variable programs

u(t) usually specify a path uniquely. We assume that a set of nominal
control variable programs u (t) has been determined that maximizes a
terminal quantity

(2.2) J [x(t), t],
and yields the specified values of certain other terminal quantities

(2.3) [x(t), t]

where is a column vector of q known functions (q <= n 1), and t.r is
the terminal value of the independent variable. Note that ts may be speci-
fied explicitly or implicitly in (2.3) or it may be the quantity being maxi-
mized (or minimized) (2.2).
We consider small deviations from this nominal optimum path which

might be caused by disturbances, and/or small changes in the terminal
values, des. Let the deviations of the state variables be

(2.4) x(t) x(t) x*(t),
where )* indicates values along the nominal path and unstarred quantities
indicate values observed along the actual path (the observed values will
often be estimates based on smoothing the observations up to the present
time). We shall call fix the "error vector." We wish to determine small
deviations from the nominal optimum control program

(2.5) 6u(t) u(t) u*(t)
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REVISED 1
TERMINAL
CONDITIONS

.o,.,,.

ICONDITIONI

sTATE
VRBLEI
s""

DISCRETE- TIME ERROR DETECTOR

4(tk)
MATRIX
STORAGE

ESTIMATED
STATE

VARIABLES
x(t)

ATRIX

OBSERVABLE

QUANTITIES

PHYSICAL

SYSTEM

NOMINAL -CONTROL
VARIABLE y

-I

CONTROL

SIGNALS

uCt)

FIG. 1. Block diagram of neighboring optimum terminal control scheme with dis-
crete-time error detection at time tk, k 0, 1, 2, Output of error detector is
constant between sampling times. (Note connection missing from A4 to multiplier.)

so that the revised terminal conditions (2.3) are met and in (2.2) is
still maximized when the initial values of the state variables differ from
the nominal values of the state variables by 3x(to). It will be assumed in
this paper that the nominal optimum control history is continuous and not
adjacent to any bound on the controls. It will be shown that a matrix
A(tk, t) can be pre-ealculated so that the control scheme

(2.6) u(t) -(, t) r .(t) ]L(t)
yields the desired "neighboring optimum" control program for tk <=
-<_ tk+l. Here t denotes the k-th sampling time when the error vector is de-
termined. This scheme is shown in a flow chart in Fig. 1 for discrete-time
error detection and in Fig. 2 for continuous error detection.

3. Derivation of the feedback gain matrices. The differential equations
satisfied by an optimum trajectory are [1]
(3.1) 2 f(x, u, t),

(3.2) X (a--) r

(3.3) 0= x
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F(. 2. Block diagram of neighboring optimum terminal control scheme with
continuous error detection.

where

and )z indicates matrix transpose. The initial conditions are"

(3.4) x(to) x.
The terminal conditions for extremalizing [X(ts), ts] with the q terminal
constraints are"

(3.5) [x(#), #] ,
(o )(3.6) X(ts) 4- Ok

r

t=tf

((3.7) xf + oOt + ’ t=s
=0
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where

Ox ’’"’ Ox

F
iOxl

and , is a column vector of q constants. Equations (3.4)-(3.7) represent
n + q + n + 1 conditions respectively for the 2n-th order differential
equation system (3.1) and (3.2) and the q + 1 unknowns , and t/.

Consider a perturbation of this optimal trajectory caused by a perturba-
tion in the initial and/or iinal conditions (3.4) and (3.5)

dt

(3.9) d

OH OH
8x u,

OOx OXOu

OH

(3.10)

(3.11 fix (to) 8x,
(3.13) fix

and

(3.14)

D dtf)x+-
8x--

\Ox/
d,--

OH
OxOu

OH
Ou

u,

dtf}t=tf

{’ + ( + dp

where

0,

+ --+)- N t=tf
=0

H Xrf variational Itamiltonian,

+ , +
D() O() + a()
Dt at -0-- f’

oH o [aH
OxOu Ou k, Ox /
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and - =f.

Now (a.10) can be solved for u provided OH/Ou is nonsingular:

--(OH-I [ -O02H(3.15) u
kOuOx

X + X

If (3.15) is substituted into (3.8) and (3.9), we have 2n coupled first
order differential equations in x and X:

a-; x G(), -cd() x
where

c (t)
OXOx OXOu \-0-] OuOx

C(t) OeH (02H-1 028
oxou \-2] ouox

C.(t),- OII OH(O2H-IOH
ox + Ozo \-/ ouoz"

Equations (3.11)-(3.14) represent n -t- q -t- n + 1 conditions respectively
for the 2n-th order differential equation system (3.16) and the q + 1
unknowns d, and dts. We shall regard (3.11)-(3.16) as linear equations,
i.e., the coefficients are to be evaluated along the nominal optimum path
determined by (3.1)-(3.7). Equations (3.12)-(3.14) are q + n + 1
equations in the 2n + q + 1 unknowns t}x(ts), X(tj), d, dtj. If we assume
that the constraints (3.12) are linearly independent and that the trans-
versality condition (3.14) is linearly independent of (3.12) and (3.13),
then there are only n independent quantities among the 2n + q + 1
unknowns. In fact, if the q quantities d, and n q of the quantities x
are specified, the remaining n + q-t- 1 quantities are determined, i.e.

[Xl, X, x Xq dtz]t=tz are linear funetions of d,

where

d,ur [d dvq, xq+l Xn]t---tf.

We now find n + q solutions to (3.16) with itx(tz) and iX(tz) determined
by setting each one of the n components of d and the q coInponents of
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ds equal to unity with the other components zero. Let us call these solu-
tions X(t, ts) where

(3.17) L(x(t) [Xx.(t), Xx(t) d
A necessary condition for the existence of neighboring extremal paths is
that X,(t) be non-singular over the entire interval to =< < ts (see
[8]). If, at any point tc, X,(tc) is singular, this is called a "conjugate
point" in the literature of the calculus of variations [see, for example,
[8]). Assuming non-singularity, (3.17) can be inverted at to to give dr,
in terms of x(t0) and ds:
(3.18) dr, [X,(to)]-l[x(to) Xc,(to) d,’s].

Substituting (3.18) into (3.17) we obtain

(3.19) fiX(t) LXx.(t), Xx(t)
xo x:(to)X,( to

d@s J
Since the control deviations depend on 8x and 8), from (3.15), it follows
from (3.19) that the control deviations are determined by fix(t0) and

(u(t) --[A(t) As(t)] FLh( to),
0

--A(t, to) L

&( to)&( to) TFx( to)-]- JL

where

aH ]
OH ]X +

h,(to) x(to).
4. Sampled data or continuous data. Now, any time t < ts, k 1,

2, may be considered as an "initial" time as well as to. If the error
vector ix is estimated at t, the modification of the nominal control
program, (3u(t), is determined for t =< =< ts. If no further disturbances
occur, this modified control program will bring the system to the terminal
point with the desired values of dffs and an extremal value of . Since
further disturbances undoubtedly will occur, several sampling times to,
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tl, may be used (see Fig. 1). Alternatively, ax may be estimated
continuously (see Fig. 2), in which case

r,tt) ]au(t) [As(t), A0(t)] kdf(t).j
where

As Al(t).h2(t),

3-o A3(t) Al(t)A,(t)A4(t).

Revisions in the terminal conditions dbs (t) may be estimated continuously
in order to accomplish a desired objective.

5. Comparison with other control schemes. All terminal control schemes
based on linearization about an optimal nominal path, which lead to saris-
lying the terminal constraints, produce the same change in the terminal
quantity being maximized to first order in ax and dsl. The first order
terms do not depend on the control law and are simply the predictions of
first order variational theory.
The present control scheme is the best one to second order in az and db

(see Appendix A).

6. A neighboring-optimum optimization technique. The numerical
solution of the nonlinear two-point boundary value problem (3.1)-(3.7)
is often far from trivial. A direct method was presented in [1] and steepest
ascent methods were presented in [2, 3]. The control scheme developed in
the previous sections is very similar to the direct method of [1]. There,
(3.1)-(3.3) were integrated numerically with initial conditions (3.4)
and estimated values of X(t0); the terminal conditions (3.5)-(3.7) were,
in general, not satisfied, so the estimated values of X(t0) were changed by
small amounts, one at a time, and (3.1)-(3.3) were integrated n times to
determine the effects on the terminal conditions; then a multiple linear
interpolation was made to find the correct values of X(t0) to satisfy the
desired terminal conditions. The ditiiculty with this technique seems to be
that the linear interpolation is often inadequate if the trial solution misses
the terminal conditions by a substantial amountin fact, severe instabil-
ities arise quite easily! A simple modification of this procedure seems to
cure the instabilities and yields a rapidly convergent computation scheme;
if the trial solution misses the terminal conditions by substantial amounts,
do not try to correct it in one stepi.nstead, correct the solution in several
small steps, each of which brings the terminal conditions closer to the de-
sired values. Each step determines a neighboring optimal path to the pre-

The authors are indebted to Richard E. Kopp for this observation in November
1961.
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vious path, staying sufficiently close to the previous path that the linear
interpolation is not stretched beyond the limits of its validity.

Instead of changing the estimated values of the components of X(t0)
by small amounts one at a time and integrating (3.1)-(3.3) n times, it
may take less computer time and be more accurate to use the perturba-
tion equations (3.1.6) and integrate them right along with the trial solu-
tion, evaluating the coefficients Ci(t), C,(t), and Ca(t) on the way. It is
necessary to find n solutions to the perturbation equations (3.16) with
X(to) 0 and each of the n quantities 5X(t0) equal to unity with the other
components zero. Let us call these solutions Y(t) where

If I is not given explicitly, some criterion for stopping the integration
must be chosen, e.g., when l[x(t), t] reaches the desired value 1s. This
determines a nominal value for tz.

In general 2, q will not have the desired values at this nominal
value of tl. From the first q equations of (3.6), nominal values for v may
be found. I-"rom the remaining n- q equations of (3.6) and the single
equation (3.7), tind values for zq+, z,, and +(tz), where

(6.2) X. O z, i q+ 1, ...,n,

O4 ,
t=tf

For a solution to the two-point boundary value problem (3.1)-(3.7),
not only must [x(tz), (tz)] z but also z (tz) 0. If these con-
ditions are not met, incorrect values for X(t0) must have been estimated.
To obtain an improved set of values for X(t0), substitute (6.1) into the
perturbation boundary conditions at tz, namely (3.12)-(3.14):

t=tI
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where dz is an n vector whose first q components are zero. The values of
d’, dz, and d) are chosen as some fraction of the desired change in the
terminal conditions, and the matrix (6.4) is inverted to find i)t. These
are the changes in h(t0) necessary to change the terminal conditions by
the specified amounts. A new forward trajectory is then run with the im-
proved estimates of h(t0) and the process is repeated until z )(ts) 0
and [x(t), ts] .

Alternatively, the solution may be approached by integrating the equa-
tions backwards from t. to to with the correct terminal conditions, and estimated values for the n unknown quantities , and Xq+l,.",

x. Using the perturbation equations (3.16) with the n unit solutions
TXx, and Xx, of (3.17), improved values for [,,..., ,q, xq+,

Xn] can be determined in terms of desired changes in. the initial condi-
tions by (3.18) with d 0.
The choice of forward or backward integration will depend on the prob-

lem; if the terminal conditions are extremely sensitive to variations in the
initial conditions and not vice-versa, more rapid convergence will be at-
tained by integrating backwards. Such is the case, for instance, in re-entry
problems.

It is often very difficult to get the first trial solution in new problems
where little previous experience is available. In this case steepest ascent
methods may have to be used to obtai beginning estimates of the missing
boundary conditions.
The present methods have a great advantage over steepest descent

methods in that no part of the solution has to be placed in memory storage.

7. An analytical example of the control scheme--thrust direction con-
trol for ascent into orbit. Using the approximation of constant gravitational
force, we consider the problem of thrust direction control to place a rocket
vehicle at a given altitude at a given time with zero vertical velocity and
maximum horizontal velocity. The terminal range is not specified. Con-
sidering the rocket vehicle as a point mass (see Fig. 3) the equations of
motion (neglecting air resistance) are"

(7.1) asin- g,

(7.2) a cos

(7.3) v,

and

(7.4) 2 u

where v vertical velocity, u horizontal velocity, y altitude, x
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FLIGHT PATH -7

FIG. 3. Geometry and nomenclature of ascent into orbit example problem

range, a thrust acceleration, g gravitational acceleration, and fl
thrust direction angle. The initial conditions will be taken as

(o) u(O) y(O) x(o) o.

The first part of the problem is to find 5(t) to maximize u/ u(t/) with

v(t) o

y/ y(t/) lspecified.
t final time

This is done in Appendix B, and the results are"

(t) talc (tan flo- (tan flo- tan ) [}(7.7)

where 0 and /are the initial and final values of fl determined by y/and
t] through the two simultaneous transcendental equations"

(7.8) see fl0 see / g- (tan 0 tan flz),
a

y/ 1

atf2/2 (tn 0 tan f) an /see / an 0 see 0

(7.9) + 2 see 0(tan fl0 tan /) log tantn f ++ seeSee
g (tan/o t,an /).
a

A typical optimal path is shown in Fig. 4, for the case in which a/g 3

and Y .258.
at]/2

The second part of the problem is to determine the feedback gains for
neighboring-optimum terminal control. Consider the variation of the
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1.0

ALT TUDE

0 .5 1.0 1.5 2.0 2.5

RANGE
yf

.FG. 4. Optimal ascent trajectory for a/g 3, yf/1/2ast .258

optimum program of (7.7)"

(7.10) see

where
XV tan z, X, tan tan z X.,.

From (7.1) and (7.)

(7.11) d (v) a cos 1(5)
dt

(7.12) d.. (By) =tiv.
dt

Substituting (7.10) into (7.1.1.) we must solve the two simultaneous dif-
ferential equations (7.1.1) and (7.12) with boundary conditions v by

0 at t/. This can be done in closed form, due to the simplicity of
the problem, and the result is

( t), A:,( t)JL d, j

LatU
where

1
(sin / sin ),A.11(t) yy

--secx[1 cos(-- fix)I,Ale(t)
(X)

Aei(t)
sec fl [1 cos ( f)](X)

A::(t) 1
(,,)

sec see (sin 1 sin f) -4- log tan + sec .1t’..n + see
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Next we must invert the expression (7.13)

D Lats2_]

where D A IA.22- A I_.A..I mad substitute this relation irlto the control
law (7.10)

cos (t) |1(t, t) *

where t is the samplig time (i.e., the most recent time whet av(tk) and
iy(t) were measured) and is the present time. Note *(t) is the program
of on the nominal path. The data that must be stored to implement the
feedback control scheme for discrete-time error detection are:

*(t), y*(t),
the predetermined(7.16) A() AI() AI() A.() sampling times ,

D(tk D(t D(t i-t J
and f* at sufficiently frequent intervals to permit interpolation of a co-
tinuous function /* (t).

Fig. 5 shows the dat necessary to provide neighboring-optimum termi-
nal control for the example of Fig. 4 usig discrete-time error detection at
five sampling times during the flight (at t/t 0, .2, .4, .6, and .8).

Fig. 6 shows part of the data necessary to provide neighboring-optimum
terminal control for the example of Fig. 4 using contimous error detection.
Also needed would be the nominal time histories v*(t), y*(t), and *(t).
All these data and the data of Fig. 6 would have to be stored at sufficiently
frequent intervals to permit interpolation of continuous functions.

8. A numerical example of the control scheme--atmospheric re-entry
at parabolic speed. Here the control scheme was applied to the problem of
guiding a lifting re-entry vehicle to horizontal flight at an altitude of 250,-
290 ft. while maximizing the terminal velocity (minimizig the energy
loss in the pull-up maneuver). The control problem was assumed to begin
when the vehicle had descended to an altitude of 400,000 ft., at which
time the velocity was assumed to be close to 36,000 ft. sec.-1 and the flight
path angle close to -7.5 (nomenclature is shown in Fig. 7).
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k/f K I K 12 K 21 K 22 V,/(tf Y)’(l’f2
__P._ 5,56 -11,6 -19i -30.9 0 0
.z 5.5 =55 -2o.6 :5.3.09 .o id

2-=.8 -25 .6 , 7 .o8
,6 6,22 -49,2 -42,8 -230 .I 99" .0767
,8 6,01 -15 -I0 -1420 ,142 ,liT5

V V-V
y y-y*

1.0 60

.8 40

CI

C2
c(t) 2O

4 0

C2(t)

2 -20

0 4o
0 .2 .4 .6 .e

tf
FIG. 5. Feedback gain programs for discrete-time error detection in example prob-

lem for a/g 3, yj/1/2atx .258.
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FG. 6. Feedback gain programs for continuous error detection in example prob-
for a/g 3, yz/1/2ats .258.
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DRAG

LIFT ........, GL!DER ZERO-LIFT AXIS

VELOCITY=V
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2

DRAG=CD p(h)V2 S
2

F(_. 7. Ge()metry and nomenclature of atmospheric re-entry exmnplc pr()blem

The wing loading of the vehicle, mg0/S, was taken as 61.3 lb. ft.-. The
1.956 ARDC standard atmosphere model was used. The lift-drag charac-
teristics of the vehicle are shown in Fig. 8. The nonlinear equations of
motion are given in Appendix C. The state variable histories for the nomi-
nal optimum path (initial velocity exactly 36,000 ft. sec.-1, initial flight
path angle exactly -7.5 are given in Fig. 9. The maximum terminal

--1velocity for this path is 27,841. ft. sec.
The control variable in this problem is the angle-of-attack, (t). Since

range (distance along the earth’s surface) at the terminal point was not
specified and does not appear in the equations of motion, it will not appear
in the feedback relation for tia. The feedback gains for continuous error
detection were called K, K, and Ka where

a KIV Jr- K2’r + Kh.

These gains were computed and are tabulated in Fig. 9 for every ten
seconds on the nominal 238 second flight. Note that the gains in this
particular problem are positive at the beginning of the flight and then go
to negative values. Near the end point the control scheme concentrates on
meeting the terminal constraints, i.e., the gains K2 and K3 tend to large
negative values, whereas K1 tends to zero.



.6- ANGLE OF ATTACK 45"40"

i’20"0

,a =5
o . ., . . ,Io ,.’

DRAG COEFFICIENT (CD)
:FIG. 8. Lift-drag polar for re-entry vehicle

Time = V h K1xl03 K2 K3xl04DeE DeSec Deg Ft/Sec Deg t %/Sec- Deg Ft

0 31.69 36,000 -7.50 ,000 .383 I. 15 .296
I0 31.5 36,039 -7.04 354,4 .3/ .859 .252
20 31.33 36,074 -6.57 311,695 .295 .2 .199
30 31.03 36,087 -6.08 271,897 .236 .377 .163
40 3047 35,939 -5.41 235,623 .165 .098
50 29.06 35,258 -4.13 205,466 .084 -.512 .0

25.27 33,807 -1.89 186,828 -.034 -2.01 .459
70 16.73 32,267 .55 183,215 -.293 -5.62 -1.34
80 3.51 31,335 1.81 1,418 -.947 -13.1 .72
90 -7.58 30,772 1.92 200,829 -1.96 -22.2 -13.0
100 -14.01 30,331 1.65 210,381 -3.11 -31. -17.7
110 -17.78 29,969 1.36 218,268 -4.37 -40.3 -21.7
120 -20.28 29,669 1.11. 2,661 -5.74 -50.6 -25.7
130 -22.14 29,418 .92 229,864 -720 -62.1 -299
140 -23.63 29,202 .76 234,136 .72 -75.2 -34.9
150 -24.91 29,013 .64 237,672 -10.3 -90.7 -41.2
160 -26.06 28,843 .53 0,615 -119 -109 -49.4
170 -27.10 28,689 .45 243,067 -13.4 -132 -61.1
180 -28.07 28,545 .37 5,101 -14.9 -162 -79.1
190 -28.97 28,411 .30 6,768 -16.3 -204 -109
200 -29.80 28,282 . 8,101 -17.7 -265 -167
210 -30.57 28,159 .18 9,117 -18.8 -374 -302
220 -31.25 28,038 .11 9,823 -19.9 -602 -746
230 -31.61 27,918 .05 250,213 -20.7 -1490
238 -31.65 27,841 0 250,290 0 -

: v + 1/2 +

FIG. 9. NominM optimum trajectory and feedback gain programs for continuous
error detection in atmospheric re-entry control problem.

209



210 :BREAKWELL, SPEYER AND BRYSON

To test the control scheme, perturbations in the initial flight path angle,
(t0), and initial velocity, V(to), were introduced. The perturbation in
angle-of-attack was obtained from (8.1) and used in the nonlinear dif-
ferential equations (in place of the "system" in Fig. 1 ). The integration was
stopped when , 0 for the second time. The errors in final altitude are
shown in Figs. 10 and 11 plotted against initial flight path angle and initial
velocity; within a final altitude error limit of 500 ft., these results indicate
an acceptable re-entry corridor of approximately 1.5 degrees in initial
flight path angle and 2000 ft. see.- in initial velocity, using only one nomi-
nal optimum trajectory as a referenee trajectory. In Fig. 10, note that the
control scheme works better for 6/(t0) < 0 than for 6,(t0) > 0; this is
due, at least in part, to the fact that the final time is greater than the nomi-
nal final time when ’y(t0) > 0, resulting in very large values of the gains,
and hence la !, toward the end of the flight. An arbitrary limit of a! <
45 was introduced to handle this situation; a more satisfaetory arrange-
ment might be to "stretch out" the gain histories to fill the predicted time
of flight, t. to + dtz.
As well as controlling ,(t) and h(tz), the eontrol scheme is also supposed

to maximize final velocity, V(t.r). How well this aspect was aeeomplished

ERROR IN TERMINAL
ALTITUDE h (if),-, FT.

800

600

400-

200-

0
-6.5 -7.5 -8.5

INITIAL FLIGHT PATH ANGLE,-,Y(to),-,DEG

:FIG. 10. Error in terminal altitude versus initial flight angle for atmospheric
re-entry control problem.
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ERROR IN TERMINAL
ALTITUDENA (if) FT.

400-

300-

I00-

35,000 36,000 57,000

INITIAL VELOClTY,V (to),FT / SEC.

FIG. 11. Error in terminal altitude versus initial velocity for atmospheric re-entry
control problem.

is shown in Figs. 12 and 13 where the final velocity is plotted against initial
flight path angle, 7(t0), and initial velocity, V(t0); the exact maximum
velocity is also shown in these figures for comparison. The exact maximum
final velocity curves were obtained by the optimization technique de-
scribed in the next section. Again, note that the control scheme works
better for 7(t0) < 0 than for 7(t0) > 0. In fact, for 7(t0) < 0 the dif-
ference between the "exact" maximum final velocity and the controlled
final velocity was so small that the two curves in Fig. 12 are indistinguish-
able. The same thing is true for V(to) < 0 in Fig. 13.

9. A numerical example of the optimization technique--atmospheric
re-entry at parabolic speeds. Here the neighboring-optimum optimization
technique was applied to the problem of determining the nominal optimum
trajectory used in the previous section, and also to generate a set of op-
timum trajectories with slightly different initial conditions. The data and
nomenclature are the same as in the previous section; the equations of
motion, the Euler-Lagrange equations and the perturbatio equations are
all presented in Appendix C. The numerical solutions were obtained by the
backward-integration technique, discussed in section 6, because we were
interested in a parametric study of the initial conditions with final condi-
tions held fixed, namely 7(t/) O, h(tf) 250,290 ft., V(t/) maximized.
The power of the optimization scheme lies in its ability to converge
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29,000-

ua 28,000-

- 27000-

26,000

V(tf)rnox USING NEIGHBORING OPTIMUM
IMIZATION TECHNIQUE

V(tf) max USING
NEIGHBORING OPTIMUM
TERMINAL CONTROL SCHEME

NOMINAL7’ (to AND V(tf)max
FOR NEIGHBORING OPTIMUM
TERMINAL CONTROL SCHEME.

INITIAL CONDITIONS
V(to )= 56,000 FT./SEC.

h (to) =400,000 FT.

TERM INAL CONDITIONS
7"(If)= 0 DEGREES
h (tf)=250,290 FT.

6.5 -6.9 -7.3 -7.7 -8.1 -8.5

INITIAL FLIGHT PATH ANGLE "7’(to )’’ DEGREES

FG. 12. Terminal velocity versus initial flight path angle for atmospheric re-
entry control problem and maximum terminal velocity versus initial flight path angle
for atmospheric re-entry optimization problem.

rapidly, to calculate the exact optimum trajectory and to generate a whole
family of optimum paths. A family of optimum paths was generated
by varying (t0) in increments of 0.2 degrees while V(to) and h(to) were
held fixed. The optimization scheme was able to converge to these changes
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28,4oo-

28,200-

28,000->

27,800-
>
d

z

a:: 27,600

27,400-

27,200-

INITIAL CONDITIONS.
7’(to 7.5 DEG.
h(tO) =400,000 FT.

TERMINAL CONDITIONS
),,( )= 0 DEG.
h (tf)=250,290 FT.

V(tf)max USING NEIGHBORING
OPTIMUM OPTIMIZATION
TECHNIQUE.

(tf)max USING NEIGHBORING
OPTIMUM TERMINAL CONTROL
SCHEME.

NOMINAL ’(to) AND V (tf) max FOR
NEIGHBORING OTIMUM TERMINAL
CONTROL SCHEME.

35,000 :55,400 :55,800 :56,200 36,600 157,000

INITIAL VELOCITY" V(to)" PT./SEC.

Fzc.. 13. Terminal velocity versus initial velocity for atmospheric re-entry control
problem and maximum terminal velocity versus initial velocity for atmospheric
re-entry optimization problem.

in only two iterations. The field of optimum paths is represented in Fig.
12 by V(s)m,x versus 7(0). Fig. 13 shows V(f)mx versus V(0) with

7(t0) and h(t0) held fixed. Here, the scheme converged to changes in

V(0) of 4-400 ft./see, with only two iterations. The control programs gener-
ated by the optimization technique for 7(0) equal to --6.5 deg., -7.5
deg., and -8.5 deg. with V(0) 36,000 ft./see, and h(0) 400,000
ft. are displayed in Fig. 14. These curves are very similar, illustrating
the sensitivity of the re-entry trajectory to small changes in .
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5O

25

10

5

INITIAL CONDITIONS
V(to) 36000 FT./SEC.

h(to) =400000 FT.

TERMINAL CONDITIONS
7(if )=0 DEG.
h (tf)= 250,290 FT.

0 50 I00 150 200 250 300

T ME"t"-S EC.

FG. 14. Angle of attack programs for atmospheric re-entry optimization problems
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APPENDIX

A. Interpretation of the control scheme as a linear system with a quad-
ratic performance index. The derivations of this section are for the most
part formal, and are primarily intended to present a heuristic interpreta-
tion of the control scheme as a linear system with quadratic performance
index. For simplicity we consider only the special case where tf, as well
as to, is given. Adjoin the constraints (2.1) and (2.3) to the performance
index (2.2) by Lagrange multipliers v and k (t), as follows:

tf
[2 f(x, u, t)] dr.(A.1) 2 ( + vr )t=z

Consider the variations of ] due to a change in control program u(t)
and changes in the initial conditions x(to) and final conditions tiP(ts):

where H krf and q- Let us choose k(t) so that

(a.a)
hr(ts)

t=tf

For a first order extremum, we must choose u(t) so that

(a.4) of o.
0u
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The constants must be chosen so that (3.5) is satisfied. We have left then

] kT X t-----t " PT t=tf "- xT -- X t=tf

1 its Ox OuI x
dt,

where ll the coefficients re evaluated on the nominal optimum pth
generated by the solution to (3.1)-(3.6). Now, it is pprent from (A.5)
that hr(t0) n.d , re the first order influence functions on J for smll
variations in the initial conditions x nd the final conditions s. We my
regard the second order terms on the right hnd side of (A.5) s quadratic
performance index to be mximized (or minimized) by choice of u(t)
for neighboring optimum pth with slightly different initiM nd final
conditions (x nd s) from the nominal optimum pth. The neighboring
optimum pth must stisfy the perturbation equations

d (x) 0f 0f(A.6) d x + u,

where, again, the coefiqcients are evaluated on the nominal optimum path;
thus equations (A.6) are linear. The boundary conditions for this accessory
maximum (or minimum) problem are

(A.7) fix(to) ix,
(A.S) a7 x .

t=tf

Such linear problems with quadratic performance indices have been treated
extensively in recent years (see, for example, [4, 5]). Let us djoin the con-
straints (A.6) and (A.8) to the performance index (A.5) with Lagrange
multipliers (t) and d, as follows:

a2- (x ax),=0- ( a),=,, ax o, +d

O=H OH
1 [xr, ur(A.9) +Io OH OH u

hr t Sx) --oxX-- Su dt.
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Now consider the variation of ti] (i.e., the second variation, 2], due to a
change in perturbation control program iu, for fixed values of fix and

(A.10) f,t" I(d 02H+ 3-t (x) + x-dr + xf0X

Let us choose X(t) so that

(A.11)
d-i (X) x

Ox u

For an extremum (ti2 0 for arbitrary tiu), it is obviously necessary that

(A.12) OHiu-t-OH (--)ou Ou oi + x o.

The constants d, must be chosen so that (A.8) is stisfied.
Note that (A.11) and (A.12) are identical to (3.9), (3.10), and (3.13)

for dt 0. Note ulso that

Ou/ Ou OX kOx] Ox

B. Determination of the nominal optimum path for the ascent to orbit
problem. The equations djoint to equations (7.1)-(7.4) are purticularly
simple:

(u.) k,

(B.2) k --,
(B.3) k 0,

(B.4) k 0.

Since x is not specified, (t]) 0. Since we are maximizing u, h(t) 1.
It follows quite simply that

(B.5) constant,
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The optimality condition is

(B.6) X cos X, sin 0,

from which it is seen that the optimum (t) is given by

(B.7) tan b-- ct, b ,,/ d--),yt/, c ,.
Substituting this expression for (t) into (7.1)-(7.4) and using the bound-
ary conditions (7.5) we obtain by elementary quadratures

(B.8) a
v -I-V/(1 + b) %/(1 + (b- ct))] gt,

C

a b +%/(1 + b2)(B.9) u log
c b ct + %/’(1 + (b ct))

( /( + ( /( + ’(B.10)
b + .V/(1 + b) + 2ct lf----} 1

log
b ct + -V/(1 + (b ct))

gt’

a[x %/(1 --t- b) "X/(l + (b ct))
(B.11)

b + //il + b)(b )
b ct-t- /(1 + (b ct)2)j

The two constants b and c (and hence, }v] and }b) are determined by the
terminal boundary conditions (7.6)

g
ctf(B.12) /ii + b) /il + (b ct)’) -d

Y/ 1 (b ct)/(1 + b ct/ bl + b)
at/ ct

(B.13)
log bE (1 + b) + 2ct/ l + b

g ct/.
b-- ct/ + (1 + b ct/ )

Equation (B.12) can be solved for ct/in terms of b (note tf is given but c
is to be determined):

(B.I) cz 1 f/a
b-- @(1 +

Subsiguting (B.14) into (B.la) yields a ranseendenal equagion for b
in germs of z. Note gh.ag

tan o b Xv/ + Xt/, o (0),
(B.]5)

tan / b c/ + kv/, / (/),
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(B.16) tan t3(t) tan t3o (tan 13o tan Bs) i5"
The maximum value of us u(t/) is given by

(B.17) us I
log

tan 0 + sec B0
at ctf tan flf + sec Bf

The corresponding value of xs x(ts) is given by

((B.18)
1/2_ats2 (cts)2

sec 0 sec Bs tun s log \t- /+ sec

Note that the maximum value of Ys in time ts with vs 0 is obtained by
ascending vertically using

(B.19) 3(t) t
2

-5;
and this program gives

1()0<t< 1+ tf

2

1((B.20) (Yf)max 1 ats.
C. Equations used in the atmospheric re-entry problems. The equations

of motion of a point mass about a spherical non-rotating earth (time being
the independent variable) are

(C.1) ? C) pVS
gsin v,

2m

2m + R h
cos 7,

(C.3) / V sin V.

The differential equations for the associated Lagrange multipliers are

(c.4)
Xv Cv pVS xv

m

2m + R +---- + cos V X

V ) sinv X V cosy Xh(C.5) X gcosX+
R+h

sinv X
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(c.6)

2g
sin -F

C, VS Op1R+h 2m -- X

V 2g

The optimality condition is

cos ,

OCL x v OCD

The initial conditions (t to) are

(C.S) V to V,
(C.9) (to) o,
(C.10) h(to) h.
Terminal conditions (t ts) are

(C.11) "Y(ts) ")7,

(C.12) h(ts) h,

(C.13) Xv(ts) Xs 1,

(C.14) k(t) Xs --v,

(C.15) Xh(ts) Xhi --v,

(C.16)

pVSt-x L + gsin

+ X’L 2m + R + h
cos , + X(V sin ,)

t=tf

The unknowns X(t]), Xt(t), and V(tf) were estimated from an approxi-
mate optimum trajectory using the method of steepest-ascent

Consider perturbations of the optimum trajectory caused by perturba-
tions in the initial and/or terminal conditions as found in equations (3.8)
through (3.15). Perturbations on the equations of motion are
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(C.17)
6V- gcos767 +

and

(C.19) 6h sin7 6V -at- cosy

Perturbations on the Lagrange multiplier equations are

2g X,] 6V6kv ICTSXv+-cosT-

(c.2o)

+ +h-F--2 sinTX- cosTX 67

+ FICvVSOPxv
m OhL

2m

+ VIPVS OCt)
Xv

L m 0o

C pS
2m

1

(C.21)

6h
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Oh .(R + h) V2(R + h)
COS 3’

2g+ -(R + h)
2g

cos-), Xv -+- V(R h)

+ + h)

V h)i)sin,),(n +
4-

C) VS Op1
2m -j X

6g
COS 3’

eS Oo OCo+ 2m Oh Oa

h

VS Oo OC X.-2n Oh Oa

-F- EC’ V:S ap 2g sin l

[(+ (R + h)-- V(R + h) COS 3’

The perturbations on the initial conditions are

(C.23) V(to) V,
(C.24) i, (to) /0,

c.25 h(to) h.
The perturbations in the final conditions are

[(C.26) i-),(ts) + C, + R + h
cos

t=tf

(C.27) h(tz) + [V sin ]t=tfdtf dhf,

(C.29)

V
cos-/X, + R + h

dtf d/,
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(c.3o)
X(ts)-t-{I 2gsinq,

-( h)
CD V2S P- by-t- I((R +

v(R + COS / dt + d O,

sin q,+ h

+ ICL2mpVS
2m --j X h

The variation in the angle of attack is found by perturbing equation (C.7):

( 1 )(C.32) aa a2H-/Oai (DlaV -t- D2ih -t- D3aX. -t- D4

where

DI x PS OCL
2rn Oa

VS OCLD X 2m Oa

oVS OCDD3
2m Oa

X.
pVS OC.
rn Oc

V2S
Xv 0C10o

and

(C.33)

D4
pVS OCL
2 0o

OH
X

pVS
Oa 2rn Oa

X
pV2S O2Cv

v 2m Oa < 0

for maximum velocity.
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ON THE CORRECTNESS OF THE FORMULATION OF AN
OPTIMAL CONTROL PROBLEM*

F. M. KIRILLOVA

In this note we shall prove that the solution of an optimal control prob-
lem [1-4] depends continuously on the initial data and on the parameters
of the system (under certain assumptions).

1. Let the control system be described by the differential equations:

dt
(1.1)

dx ak(t, cl, c)xk(t)

+ b(t, cl, ,ce)uk(t), i 1,

where Xl Xn are the coordinates of the representative point in phase
space, cl, ce are parameters, and u(t), ur(t) are control func-
tions. The functions a1(t, cl ce), and bi(t, cl c) are continuous
in the time and in the system parameters c, c.
We shall assume that the u(t) are piecewise continuous, and that the

constraint ma u(t) _-< N, ]c 1, ..., r, has been imposed on these
functions, where N is a certain constant. In evaluating max lug(t)[, we
shall not take into account values luk(t) at isolated points t, if these
points constitute a set of mesure zero.
For given fixed parameters c, ce in (1.1), the problem consists in

the following" Given a time to and a point x(to) Xo, choose control
functions u(t) such that the point x(xl0,--., XnO, to, U, Ur, t),
moving along a trajectory of the system, attains the origin from the initial
position x0, XnO in the shortest time T.
The functions u(t) which satisfy the requirements of this problem will

be called optimal control functions, and the time T will be called the
optimal time for the response of the process.

It was shown in [1-4] that a solution of the given problem exists (under
certain restrictions). It is of interest to investigate how the optimal control

Originally published in Izvesti VUZ, Mtemtik, No. 4 (5), 1958, pp. 113-126.
Submitted Jun. 24, 1958. Translated by L. W. Neustadt, Aerospace Corporation, E1
Segundo, Cliforni. Some minor chngesfor the ske of clarity nd completness
hve been made by the trnsltor, prticulrly in Lemms 3.1 nd 4.1.

The S. M. Kirov Url Polytechnic Institute
In such circumstances it is customary to sy: u(t) -< N lmost everywhere in

[to, r]. In practice, one my consider that u(t) > N only t isolated points, the
number of which, on each interval [to, r], is finite. These points should simply be
neglected in the given problem.

224
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functions and the optimal control time depend on the initial data Xo,
x.0 and on the system parameters Cl, c.

In this note we shall prove that the solution u(xo, Xo, to, ct,
c t), T(x.o Xo to, c c) depends continuously on the initial
data Xo, XnO and on the parameters c, c (under certain assump-
tions). In other words, we shall settle below the question of the correctness
of the formulation of the optimal control problem.
We introduce some notations. If z is a certain function z(xo, x,o,

to, c,, c) of the initial data and of the system parameters, we shall
in the sequel write z Z(Xo, to, c). In particular, in place of u(xo,
Xo, to, c Ce, t) and T(Xl0, XnO, to, C C), we shall use
the symbols u(xo to, c, t) and T(xo to, c).
The optimal control problem may be considered to be correctly formu-

lated if the optimal control functions u(xo, to, c, t) and the time T(xo,
to, c) (for fixed values of c, c) are continuous in the initial data

x0 that is, for every > 0 nd e > 0 there exists 8 > 0 such

 eas

T( o, to, c) T(xo’, to, c) <

whenever Xo Xiol < t.
Also, for given initial conditions Xo, Xo, we shll sy that the

solution u(xo, to, c, t), T(xo, to, c) is continuous in the pmmeters
c, c, if, for every > 0 nd e > O, there exists > 0 such that

mes

T(x , to,

whenever c c( < .
The proof that the solution of the optimal problem has these properties

is given in 3, 4. In 2 some uxiliary material is presented.
2. Let u(t) (t), 1, ..., r, in equations (1.1), where the

(t) re piecewise continuous, essentially bounded functions.
The solution of (1.1) hs the form (see [6])

t(2.1) x(t)
kl s,l=l k=l

The symbol mes(] u(xo, to, c, t) u(xo’, to c, t)] ) denotes the mesure of
the set of for which u(xo to, c, t) u(xo’, to, c, t) . In other words, we re
concerned with convergence in mesure of the control functions. This rises from the
specific character of the problem, whose solution u(xo, to, c, t) is made up of dis-
continuous functions.
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where the k(c, t) are the functions in the fundamental matrix of solutions
of system (1.1) with bik 0, and the (c, r) are the functions in the
matrix which is the inverse of the fundamental matrix.

Multiplying relation (2.1) by Cmi(c, t), and summing over i, we obtain

kni(C, t)x(t) X,o --[-

_
,(c, -)b(c, )w() dr, m 1,...,n.

i=l k=l l=l

Suppose that the point xi(x0, to, c, nl, nr, t) of the trajectory of
(1.1) attains the origin for some > to. Then the functions n(r) must be
solution of the system

(2.2) --X,o ,,(c, ’)w(’) dr, m 1,..., n,

where

"y,k(c, r) #_ ,(c, r)bzk(c, r).
l=l

Let us consider the space L(t0, t) of systems of functions
{’l(r), /r(r)}, i.e. the space of Lebesgue integrable functions

() () d < +
0

Let () denote the norm of the element (r). Namely,

t

Then, the general form of a linear functional which is defined on the
given normed linear space is

k=l

where the (t) are piecewise continuous, essentiMly bounded functions.
Moreover, the norm of the functional f is given by the formul

]yl=m],()l, t0t,=l,’-’,r.

Returning to relation (2.2), the optimM control problem cn be formu-
lated s follows" Among the linear functionls which are defined on the spce
L(to, t) of systems of functions

(c, ) {(c, ), ..., (c, )}

with norm
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where cl,..., ce are given fixed parameters, find the functional f of
least norm which is a solution of (2.2). If there exist values of for which
rain [If --< N, then, for the given initial conditions xl0, .-., xn0, and
the constraints uk (r) _-< N, the origin is attainable in the time 0 to.
If there is a smallest 0 for which rain f =< N, then an optimal control
does exist.
We shall consider the given problem for the case where the systems of

functions {/il(C, r), ’r(c, r)} are completely independent [7]; i.e., we
shall suppose that, for each k 1, r, the relations

o, o
i=1 i=1

hold only on a set of measure zero.
Following [7], we shall say that the element

i=1 i=1

is minimizing on the interval [to, t] if

fttmin Xi ,ik(c, r)
k=l i=1

t)II,

the minimum being taken over all h, hn satisfying the relation

hiXio --1, x0 0.
il i=l

As is shown in [7], a solution of (2.2) exists (provided the systems
{’i(c, ’), "-, "ir(C, ’)} are completely independent) if and only if we
allow f >-- k(Xo, to, c, t), where the function },(Xo, to, c, t) is defined
by the condition

X(xo,to,c,t)
rain

o=1 i=hi’i(c’) d-,

Since

hXo --1, Xo0.
i=l i=l

dr

is always attained [7] with values h, )tn satisfying the conditions

hiXo -1, Xio O,
i_1 i_1

This will, for example, always be true if the a are constant, and if the eigen-
values of the matrix (ai) have negative real parts.
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we may consider a functional f which is a solution of (2.2) and has norm
X(Xo, to, c, t). Let f X(Xo, to, c, t), and let if be a solution of (2.2).
If the element

,(, ,-) (2 x,n,,(, ,-), ..-, F; x,,,(,
i=1 i=1

is minimizing on [to, t], then it is obvious that

ftt hi ")Ilk(C, T)tc(7") dT -1
k=l i=1

and

E x, ,(c, ) d
k=l i=1 X(xo, to, c, t)

Hence, f(/) ’ f 11. Consequently, if f is a solution of (2.2), and
if I] f X(x0, to, c, t), then, for every element

’(C, T) (E )k,’gil(C, T), )ki’Yir(C, T)),
i=1 i=1

which is minimizing on [to, t], we have

x (c, )() d X(Xo ,to ,c,t).
k=l i=1 i=1

dT.

Hence, if we neglect a set of measure zero, it follows that the functions
n(r) can be found from the formulas [3]"

(2.3)
to, c, r)

:Co, to, c, t) sign Xi3’1 (c, r),
i=1

XiXo --1,/c 1, r.
i=1

Thus, if the origin can be attained from (xlo, Xn0), the control func-
tions are determined uniquely by relations (2.3).

It can be shown that the function X (xo, to, c, t) is continuous and strictly
monotonic in (for fixed Xlo, ---, Xo, to, c, ..., ce). In fact, if the
element

(,,) ( ., ,,r(,*))X, ,(C, .),’’ X
=i i=1

is minimizing on [to, tl], and if the element

Xi’Yir(C, T))X 3,(c, r)
i=l i=1
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is minimizing on [to, t.], then it is obvious that

x (c, )
k=l i=l

Let tl < t.. Then,

k=l i=1

Hence,

dT.

dT.

it follows that

(c,) >__ (c, r) dr,
kl i------1 k----I

from which we see that

F(xo, to, c, t2) F(xo, to, c, tl) "(c, ) dr.
k----1 i=l

If t2 -- tl F(xo to, c, t2) F(xo to, c, tl). This proves that F(xo to, c, t)
is continuous from the right. To show that F(xo, to, c, t) is continuous
from the left, we use the inequality

fttl ]ttlhi yik(C, T) dT (c, ) dr.
k=l il k=l i1

If t t,

k=l i=l

We shall show below in Lemma 3.1 that the numbers h (for the values
t t) are uniformly bounded. Therefore, the last inequality implies
that F(x0, to, c, t) F(xo, to, c, t) as t: t.

2 ,ik(c, r) dr > )1-i(c, r) dr,
k-l i-l kl il

i.e., F(xo to, c, t) > F(xo, to, c, tl), where F(xo to, c, t) [h(Xo, to., c, t)]-,
which also proves the monotonicity of F(Xo, to, c, t) (and, consequently,
also of (x0, t0, c, t)).

Let us now prove that F(xo, to, c, t) is continuous. Since
t2

h (c, r) dr rain (c, r) dr,
kl i1 kl i1
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From the fact that F(x0, to, c, t) is continuous in it follows that if the
origin can be attained for at least one value of t--with the initial data
Xlo, XnO and bounds Ink(r) =< N--then there exists a unique opti-
mal control defined by the formulas obtained from (2.3)"

u(xo, to, c, )
(2.)

N sign 2 i(c, ’), 2.] Xo -1, lc 1, .-., r.
il il

3. The proof of the basic assertions which were stated in 1 is based on
an auxiliary lemma. By the symbol 7(r), m 1, r, we shall de-
note continuous functions of the argument r which are defined on the
interval t0 < r < < 0.
LEMMA 3.1. Let there be given a sequence

() () ..., x()
il il

such that (v) K for every , where K is a constant. ( the (r)
m 1, r, 1, 2, are continuous functions such that(r)
(r) uniformly as/c for every i and m, and if the systems{l(r),
()} are completely independent, then the numbers hi, 1, 2,...,
i 1, n, are uniformly bounded.

Proof. Assume the contrary. Without loss of generality, we shall assume
that

Since t0 t 0, there is no loss of generality in assuming that t tends
monotonically to some limit as .
By hypothesis, (r)t 5 K. Consequently, the sequence of the norms

of the elements

)() (), ..., --()
i= Ck i= Ck

tends to zero. Since

Xi 1,
=i C

we shall assume, again without loss of generality, that

for each i, as k -- .See footnote 3.
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Consider the element

o() (), -.., ()
i----1

Suppose that the sequence tl is increasing. Then,

k

m=l il ek m=l

< X

+ ,() d
tk m=l i=l

(an analogous estimate for the derence of the norms of the elements
o(r)t and (r),, can be obtained ff the sequence t is decreasing).

Since the functions are continuous in r and

im ()= i(r) as k , uniformly in r,

it follows that

But (r)t 0, so that o(r)t 0. However, = ]a 1, and
[l(r)t, .(r)t} are completely inde-the systems of functions

pendent, so that, for each k,

E ,() 0
i=l

only on a set of measure zero. The contradiction proves the lemma.
We shall now show that, for fixed parameters c, c, the solution

u(xo, t0, c, r), T(xo, to, c) of the optimal problem is continuous in the
initial data Xo, Xo.
TgEOREM 1. U the systems of functions {(c, r), (c, r)} of (2.2)

are completely independent, and if there exists, for certain initial conditis
Xo Xo an optimal control u Xo to, c, r) with optimal time T Xo to, c),
then, for every z > 0 and e > O, there exists a > 0 such that

meas (] u(xo, to, c, r) u(xo’, to, c, r) z) < e,

T(xo, to, c) T(xo’, to, c) <
whenever ]x0 x0] < .

Proof. Let T be the optimal control time for the initial conditions
Xo, x0. By the definition of F(xo, to, c, t), F(xo, to, c, T) 1IN.
As was shown in 2, F(x0, to, c, t) is strictly monotonic and continuous in
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t. Consequently, for an rbitmry e > 0, there exists > 0 such that

1 1F(xo, to, c, T ) < [, F(xo, to, c, T q- ) > q- .
In [7] it is shown that, for fixed c, ---, c, and t, the function

F(x0, t0, c, t) is continuous in Xo, Xo. Therefore, for u sequence of
initial dutu Xo X.o converging to Xo, x0, we have

[F(xo, to, c, T ) F(xo, to, c, T e) < ,
F(xo, t0, c, T + e) F(xo, to, c, T + e)[ < ,

when m > M. Taking the preceding inequalities into account, we conclude
that

1 1F(z, to, c, T ) < F(xo, to, c, T + ) >

when m > M. But, for fixed m, the function F(xo, to, c, t) is strictly
monotonic and continuous in t. Consequently, for every m > M, there is
a unique 0 T(x0, t0, c) such that

1F(x0, to, c, 0) N’

and, hence, T(x0, to, c) T(xo, t0, c) < e when m > M. Because of
th6 arbitrariness in the choice of > 0, this also proves that the optimal
time T(xo, to, c) depends continuously on Xo, xo.
We note that because of the continuity of the optimal control time in the

initial data, it follows that the set of points in phase space from which the
origin is attainable (with given to) is open. For systems of equations with
constant coefficients, this fact was noted in [2].

Let us now prove that the optimal control functions u(xo, to, c, )
converge in measure to the functions u(xo to, c, ) as x Xo As was
shown above,

u(xo, to, c, r) N sign E ?7,;(c, r), lc 1,-.., r,
i=1

o 1, t0 < r < to+ T,

u xom, to c, r N sign h% c, z k 1, -..,r,
i=1

t0 < < t0+ TXo --1,

(the symbols T and T denote T(xo, t0, c) and T(Xo, to, c), respectively).
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The element

),(c, r) ,(c, )
i=1 i=l

is minimizing for the condition

i=1

on the interwl [to, to + T]. The elements

are respectively minimizing for the conditions

k Xo --1
i=l

on the intervals [to, t0 + T].
Since

1 1]o(C,r) , }l(c,r) = when m > M,

we conclude on the bsis of Lemm 3.1 that the numbers k re unormly
bounded. Let k’ be convergent subsequences of the sequences

k’ as s, i= 1,...,n.

Then, the element

)(c, ) X,(c, ), X,,(c, )
i=l i=1

is obviously minimizing for the condition

hXo -1
i=1

on the interval [to, to + T]. Consequently,

sign X(c, r) sign X(c, r), 1, ..-,
il i=1

almosg everywhere on [0, 0 + T] (see [7]).
Bu his means ha, beginning wih some number m > M, all he eros

of he funegions

X(c, r),
i=1
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are found in an arbitrarily small e-neighborhood of the zeros of the func-
tions

E 0X,(c, ),

respectively (when speaking of zeros here, we refer only to those zeros
where the functions actually change sign).

Indeed, if, for some e > O, there were no M satisfying the preceding
condition, it would follow from the uniform boundedness of the numbers
h that there exist convergent subsequences X; and if

h---hi as s---- , i= 1, n,

then

sign hhik(c, r) sign ik(c, ), k 1, ,r,
i=l i=1

almost everywhere on [to, to -4- T]. Thus, our assumption leads to a con-
tradiction. Consequently, for every e > 0, there exists a number M be-
ginning with which all of the zeros of the functions

i1

fll within n e-neighborhood of the zeros of the functions

i=1

nd outside of this e-neighborhood the signs of the functions

h(c, r) for m > M
i=1 i=1

agree. But this means that, for ny > 0,

mes ( u(xo, to, c, ) u(xo, to, c, r) z) < e, m > M.

Thus, the optimal control time T(x0, t0, c) nd the control functions
u(xo, to, c, r), for fixed parameters c, c, re continuous in the
initial dat xo, x0.

Note. Inasmuch s n ctul utomtic control system can never be
identified exactly, it follows, in prticulr, that there will lwys be n
error in the determination of the initial dt x0, x0. Therefore,
the following problem is of interest" Let the optimal control u(xo, to, r)
achieve the origin in the time T(x0, t0) T. Will the point on trajectory
of (1.1) be near the point x 0 t the time t0 + T (t0 being the initial
time) if the initial dta x0, x.0, t0 re the very sme, but the control
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functions correspond to initial conditions xl0, XnO near xlo, XnO ?
The theorem proved above permits us to answer this question in the

affirmative (under our assumptions).
Indeed, if u(xo, to, r) are the optimal control functions for the initial

conditions xl0, xn0, and if T is the control time, then, according to
formulas in [6], we have

(3.2)
o (to + T)xo

i=l

fto+,+ 8(to + T)8(r)b.(r)uk(xo, to, r) dr.
k=l s,l=l

The position of the point x(x0, to, u, Ur, t)--moving along a tra-
jectory of (1.1) with the control uk(x0, to, r)--at the time to + T is
determined by the relations (according to formulas in [6])

x(to + T) k(to+ T)xo
i=1

+ i(to + T)(r)bk(r)u(xo’, to, r) dr.
k=l s,/=1

From (3.2) and (3.3) we obtain

f/ (to + T)(T)b,k(T)(U(Xo’ to, T)x( to + T)
o = .=

u(xo, to, )) d.

Let us estimate xi(to + T). Since the functions (r), @8(r), and
b,(r) are continuous in r, and, consequently, bounded on [to, to + T],
it follows from (3.4) that

fto+Ix,( to + T) <= A u(xo, to, r) u(xo’, to, -)
k=l at

where A is some constant.
Let us partition the interval [to, to + T] into subsets"

E {:[ u(xo, to, ’) u(xo’, to, )1 -> },

E {r: u(xo, to, ’) u(xo’, to, r) < }

where is a positive constant defined below. Then,

x(to + T)I <= A = If. u(xo,to,’)- u(xo’, to,r)[dr

+ lu(xo,to,-)--u(xo’, to,r), d1
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Now let f be an arbitrary, as small as desired, positive number. By Theo-
rem 1, if e /(4ArN), there is a ti > 0 such that

meas (I u(xo, to, r)

uk (x0r, to, tc 1, r, X.io Xio < .
If /(2ATr), then

[x(t0 + T) <= A[2Ner + .Tr],

or, finally,

Thus, if the control functions of the control system are introduced with
a certain error dependent on the initial data (IXio Xo] < ti), a process
which is close to the optimal process will be obtained.

4. Let the parameters cl, ce of the system vary in the presence of
the initial data xlo, ..., x. We shall prove that the optimal control
functions u(xo to, c, r) and the optimal control time T(xo, to, c) are
continuous in cl, ce.
THEOREM 2. If the systems of functions

/(c, ), .’., r(C,
are completely independent, and if there exists, for some values of the param-
eters cl, ..., ce, an optimal control u(xo, to, c, r) with optimal time
T(xo to, c), then, for every r 0 and O, there exists a 0 such that

mes ([ u(xo, to, c, ) u(x0, to, c’, ) => ) < ,
T(xo, to, ) T(Xo, to, c’) I<

whenever ci ci’ < .
Let us first derive a property of the function F(xo, to, c, t).
LEMMA 4.1 For fixed xio, XnO, to, and t, the function F(xo, to, c, t)

is continuous in the system parameters c c
Proof. Let c be a sequence of parameters which converge to c as

m -- . Since

F(xo, to, c, t) min X (c, r) dr
kl il

X "yik(c, r) dr
k=l i=1

under the condition _=1 iXo -1, and

fttF(xo, to, c", t) min , i(dn, r) dr
kl i--I

dr
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under the conditions

it follows that

x:mxo --1,
i=1

0 < F(xo, to, cn, t) <=

xi0 0,
i=1

dT.

Since the functions ,i(c, r) are continuous in as vell as the parameters
cl, ce (because of the theorems on the continuity of solutions of differ-
ential equations with respect to parameters [6]), the functions k(cm, r),
for 0 =< r =< and m 1, 2, are uniformly bounded. Hence, the num-
bers F(xo, to, cm, t), for m 1, 2, are uniformly bounded. It follows
from Lemma 3.1 that the numbers ),m are also uniformly bounded (for
m 1, 2, ), so that we can find a subsequence ms such that ),}n, --* 7,i
as s -- (for i 1, n) Consequently, since the functions /k(cm8 r)
converge uniformly to ,(c, r),

lim x’n%’i( ’"C ,r) dr 7,,k(c,r) dr as s--
k=l i=1 k=l i=1

By the definition of F(zo, to, c, t), we have (since XZo --1)

t tL(c, ) d x ,(c, ) d,
k=l i=l k=l

and, similarly,

Xi ,(cm", r)
i=1

C 77") dT.

Passing to the limit under the integral signs, we obtain

Xii(c, r)

so that these two integrals are equal.
Consequently, as s -- ,

Cm t) ---+fttF(zo to,
k=l i=1

dr F(xo, to, c, t).

Obviously, for every convergent subsequence of the values F(xo, to,
c, t), we obtain F(Xo, to, c, t) in the limit. Since the values F(xo, to, c’, t)
are uniformly bounded in m, every subsequence of the values F(xo, to,
c", t) converges to F(x0, to, c, t).

This means that F(Xo, to, c, t) is continuous in the parameters cl, ce
(for fixed x0, XnO, to, t).

i=l
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The continuity of the optimal time T (x0, to, c) and of the control func-
tions uk(x0, to, c, ) in the parameters Cl, ce can now be derived from
Lemmas 3.1 and 4.1 just as was done in the proof of Theorem 1. Therefore,
we shall present only a brief proof of Theorem 2.

Let T be the optimal control time. Then, from the monotonicity and
continuity in of F(xo, to, c, t), it follows that

1 1F(xo, to, c, T ) < r , F(xo, to, c, T + ) > + ,
where e is an arbitrary, as small as desired, positive number.

If c ----> c as m , then

[F(xo, to, c, T 4- ) F(xo, to, c", T -4- e) <
when m > M (Lemma 4.1).
Hence,

T(xo,to,c) T(xo,to,c) < e for m > M.

The control functions (according to (2.4)) can be computed from the
formulas

u(xo, to, c, )

Nsign ’ 0 r) - to < < t0d- Th Xio 1,hi i1(c,
i=l

uk(xo, to, c ’)

N sign himyik T) E k iOx --1 to < < to-- Tin.C T
i--=l i-=l

Since the "yi(c, r) are continuous in c, c, we may conclude on the
basis of Lemma 3.1, that the h’ are uniformly bounded. Therefore, repeat-
ing the urguments of Theorem 1 with insignificant modifications, we may
convince ourselves that all the zeros of the functions

i fik(cm, T),
i-1

beginning with some number m > M, are found in an e-neighborhood of the
zeros of the functions

Xi ,(c, r),
k-i

and that, outside of this neighborhood, the signs of the functions
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ik(c’,r) and /k(C,T) for m > M
i----1 il

agree, i.e., for any > 0,

meas (l u(xo, to, c, ) u(x0, t0, cTM, r) ! ) 0

sm .
With this, the proof of our assertion is complete. The author considers

it her duty to note that she became acquainted with optimal control
problems through N. N. Krasovskii.
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A SUFFICIENT CONDITION IN THE THEORY OF OPTIMAL
CONTROL*

E. B. LEEr
This note sets forth results which cover most of the known cases where

L. S. Pontriagin’s Maximum Principle [1] is a sufficient, as well as a neces-
sary, condition for optimal control.

Consider the system

(a) o fO(x t) q- h(u, t)

(b) A(t)x + h(u, t)

with X(to) Xo and x(to) 0. Here f0, h0, A, and h are continuous in all
arguments, x is the system state, an n-vector, and u is the control, an
m-vector, x is a scalar variable which measures the quality of control.

If u(s) is any control function on the interval [to, t] we will write the
corresponding response of equations(a) and (b) as (t) (x(t), x(t)).
The control u is restricted to a set ] R". It is assumed that either 2 is
compact or that h, and h are such that

max{),, h (u, t) + ,h(u, t)l
ue

exists for each [to, T] nd , (h, h) R+ with h < O.
It is further assumed that f(x, t) is a single valued, convex function of

x for each [to, T], that is,

Of- (x, t).(o x) A- f(x, t) < fo(, t)
OX

for all x, R and [to, T].

Definitions,

(a). u*(s) on [to, [/’] is an extremal control if for some

h(t0) (0,h0.’’ h0) and X= constant <0,

xh (u*(s),s) + X(s).h(u*(s),s) Max {,h(u,s)

+ x(s).h(u, s)}
where

* Received by the editors May 1, 1963 and in revised form June 21, 1963. The work
was done at the Minneapolis-ttoneywell Regulator Company with support from
NASA contract NASw-563.

Institute of Technology, University of Minnesota, Minneapolis, Minnesota.
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, -A’(t)X ), 1’X- (x* (t), t), denotes transpose).

tIere x,(t) is the response corresponding to u*(s), to <= s <= .<= T.
(b). The control u(s) is allowable if it is a measurable real valued vector

function with range in ft on [to, T].
(c). The set of attainability K(7’, x0) is the collection of end points of

the responses (t) (x(t), x(t)) which initiate at (0, x0) for all allow-
able controls u(s) on [to, T].
The problem of optimal control studied here is to select allowable con-

trols u(s) which "steer" the response x(t) from the initial point x0 at
time to to a prescribed target set G at time T < and minimize the cost
functional of control C(u) g(x(T)) + x(T). Itere g is a continuously
differentiable function of x. An allowable control which provides an ab-
solute minimum for C(u) amongst the set of all allowable controls which
steer x(t) from x0 to G is called an optimal control. Note, the free end
point problem results when G R.

Let us establish a basic inequality for this problem.
LEMMA. Let u*(s), to -< s <= T, be an allowable extremal conlrol wilh

corresponding response 2,(t) which initiates at 2(to) (0, x(to)), then
X( T) 2,( T) >= X( T) & for X < O and all & K( T, xo).

Proof.
Consider

d(X.u,)
dt

=k(f(x* t) + h(u*’ t) +(-A’(t)k k Of )- (x,,,t) .x,,

+ k.(A(t) x, + h(u*,t)).
Upon integrating both sides between 0 and T we obtain

x x.(T) + (’).x,(T) X(t0).(t0) x (x,(t), t)

of ox t).Xu.(t)) + t) + t)}
Let (t) be ny other response with initial vlue x0 x(to) for which

we clculte

Xx, (T) + x( .z(T) a(t0).z(t0) X (x(t),t)

Of (x,(t) t).x(t)) + kh(u(t) t) + h(t).h(u(t) t)} dt.
Ox
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h (u*(t), ) q- ,(t) h(u*(t), t) >= ),h (u(t), t) -k >,(t) h(u(t), ).

Thus if

l Of(x’**(t) t)’x’*(t)l> hlf(x’*(t)’t)o fO(x,(t) t) -7x
of"
Ox

(Xu,(t), t).x(t)

we obtain the desired inequality..his is certainly true if 0 0 nd

off (x,,(t), t) x,(t) .f(x,(t), t) > (,,,(t), t) z(t) .o (x(t) t)

which is the convexity condition on f0.
I hus we have

x,,., T) + a( x,,.,(T) _>= ^ .%, T) + X(T) x,,(T)
0I’

X(T) .,(T) >= X(T)
1| & K (T, Xo) and the lemm is established.
The basic inequality of the lemm enables us to establish the sutliciency

of the maximum principle in a number of cases. These results are suln-

marized as
THEOREM.
(A). Consider the cost functional of control C(u) x( T) and as target

set G a point xl. Let u*(s), to <= s <= T, be an allowable extremal control
which steers the corresponding response x,(t) from Xo at to to xl at T, then
u (s) is an optimal control.

(B). Consider the cost functional C(u) g(x( T) q- x( T) with g(x) a
convex function of x and consider the target set G Rn, (this is the j’ree
end point problem). Let x(to) xo. Then u*(s), to <= s <= T, is an
optimal control if it is an allowable extremal control with ,(T) (-1,

Og (Xu,( T) )) (The condition on (T) is a so called trans;ersalitg condition).
Ox
(C). Consider the cost .functional C(u) :c(T) and the convex, closed,

target set G lxlv(x) <= c} [n, where y is differentiable and c a constant.
Let u*(s), to <= s <= T, be an allowable extremal control which steers Xu,(t)
from Xo at to to x G at T with )( T) an interior normal to G at x,( T) on

X is an interior normal to G at x on OG if the vector ), is orthogonal to a sup-
port plane of G at x and is directed into the halfspace containing G. Thus G need
not, have an interior to have interior normals. Note if G does not have an interior we
can still approxinate it by a v(x).



OG, then u* (s) is optimal if such a control exists. (If there is no such u* (s)
then the minimum may occur interior to G in which case (B) applies with
(T) (--1, O, 0 O) and if G is just one point part (A) is obtained).

Proof.
(A). From the lemma

,(T) .2u,(T) >=_ ,(T) . for )0 <0 all & K(T, x0).

Thus
0k(T) x,(T) + , x, (T) >= k(T) x(T) + ^ x (T).

But, comparing only those responses that end at x, that is, those for which
x,,(T) x(T) Xl, the basic inequality becomes

x, (T) >__ x(T).

Since 0 < 0 we have C(u*) x. (T) _<_ x (T) C(u) and therefore
u (s) is optimal.

( --Og (x,(T)))the inequality of the lemma is(B) With

--Og (x.( T) ).x.( T) x.( T) --O__g (Xu.(T)).x(T) x(T)
Ox Ox

Adding and subtracting g(x,(T)) on the left side nd g(x(T)) on the
right side the last inequality becomes

--Xu .(T) g(x,.(T))

Og
-Xu T) (x( T) + .(Xu( T) (x,(T)).x(T).

But,

0g (x,,( T) (x,( T) x,( T) -- g(x,( T) >_ g(x,( T)
Ox

if g is a connex function of x. Therefore

-C(u*) -x,(T) (x,(T)) >= -x(T) (:(T)) -C(u),

or C(u*) C(u). Hence part (B) is established.
(C). Assume for simplicity that was picked to be a convex function

on G with c)G {x l’(x) c}. Consider only boundary points x.(T)

{ O’(x,(T))}iorderfo(T) towhere it is required that h(T) l --xx
be an interior normal to G at x,(T) on OG, (let lc 1).
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The inequality of the lemma can then be written

X(T).x,(T) x x,(T) + (x,(T)) .z,( k( ).(

x z(T) + - (z.(T)) .z.(T)

If z,(T) is on ghe boundary of G ig is also grue gha (z,(T)) c
7(z(T) for all allowable responses x(T). Adding he las gwo inequalities
we obtain

xo xO,(T) o T) ’) T xo- (x,( ).x,( + /(x,()) >= x (T)

o (u,(T)).u(T) + (x(T)).
Ox

But again if Xu,(T) in on/)G and x(t) is in the connex set G we have

0__ (x.(T)) [x.(T) x(T)] + ,(x(T)) > /(x.(T))
0x

and therefore

C(u*) _<__ C(u).

Remarks. If the set of attainability is closed there will exist optimum
control provided there is at least one control that steers the response to
the desired end point x G, assuming G is also closed. The property of
closure is discussed in [2] in which a bibliography and discussion of cases
are presented. The set of attainability is also known to be closed if h(u, t)

B(t)u, f(x, t) x W(t)x and h(u, t) u U(t)u, for W(t), U(t)
positive definite on [to, T].
When the set of attainability is closed, in the above case, the inequality

of the lemina establishes that its lower (exterior normal with h0 ,: 0)
surface is convex. For if it was otherwise we could be led to a contradiction
of the maximum principle. Note that the transversality condition [1]
follows from the established inequality of the lemma since (T) must be
an exterior normal of/(T, x0) at the corresponding response end point,
2,(T).
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GENERALIZED CURVES AND THE EXISTENCE OF OPTIMAL
CONTROLS*

R. A. GAMBILL?

Introduction. Consider the following problem in optimal control"
Determine if there exists a vector function u(t) belonging to a prescribed
class of functions , which minimizes the functional

(1) I(u) f(,x,) + f(0, x(0), , ())

subject to the conditions;
(a) differential equations

(2) 2 g(t, x, u), d/dt

(b) inequalities

(3) (t, , u) _>= 0

(c) end conditions

(.4) (to, x(to)) E0, (t,, (t,)) E,

E0 and E being prescribed closed sets in n + 1 dimensional number space.
x is an n-vector (the state vector) x (x, x), u an m-vector (the

control vector) u (u u ), g an n-vector, h a q--vector (q >= 0),
will be called time. We restrict the class of functions ( to be the class of
bounded measurable functions, that is, each component of the vector u(t)
is a bounded measurable function defined on the interval [to, ta]. Also, as
soon as a particular control function u(t) a is chosen, we consider only
the resulting absolutely continuous solutions of (2), satisfying (3) and (4)
(if such solutions exist).
This problem has received attention in several recent papers, we mention

here only a few, [2-4, 10, Chap. III, 11, 13]. Very briefly, the nature of
these theorems is as follows" If the functions f, f0, g, h satisfy specified
smoothness properties and are of a certain form and if there is one function

Received by the editors My 18, 1963 and in revised form August 5, 1963. This
research ws supported in prt by the United States Air Force through the Air Force
Office of Scientific Research, Office of Aerospace Research, under Contract No. AF
49(638)-382, in prt by the National Aeronautics nd Spuce Administration under
Contract No. NASr-103, and in part by the National Science Foundation under
contract No. NSF-6-9666. Reproduction in whole or in prt is permitted for any
purpose of the United Stntes Government.

? Department of Mthemtics, Purdue University, West Lafayette, Indi.n
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u ( for which the conditions (2), (3), (4) are satisfied, then there is a
function u* a and satisfying (2), (3), (4) for which the functional I(u)
attains its minimum with respect to all such functions u. It seems that the
most difficult step in such theorems is to show that the set of all solutions
of (2) obtained by letting u vary in a, and satisfying (3), (4), form a
closed set.

It is the purpose of the present note to examine these theorems from the
point of view of the direct methods of the calculus of variations, in par-
ticular, employing the concept of "generalized curve" invented by L. C.
Young [12], and developed further by E. J. McShane to study problems of
Bolza in parametric form [5-7, 9]. It is a rather striking property of the
space of generalized curves that a topology may be defined on the space
which leaves every integral of the calculus of variations continuous while
at the same time preserving compactness of certain sets of generalized
curves (1). Thus, since differential equations (2) and inequalities (3)
can. be expressed as isoperimetric conditions (2), the problem mentioned
above concerning closure of the solution space of (2) is immediately solved
in the space of generalized curves.
A simple observation is needed to transform the above problem directly

into the type of problem which we shall analyze. Put

UJ(t) t,]4-n(t), Z]-t"n(to) 0, j 1, 2, m.

We now identify x(t) as an n -+- m vector

(t) (x(t), (t), x+(t), ..., +’(t)),
(t) (l(t), n(t), n-l(t), ,n-m(t))

(:(t), ..., (t), u(t), ..., u’(t)).

The sets E0,-]1 Of (4) are replaced by closed sets/0 E0 )< 0,/1 El
)< V, where 0 is the m-dimensional 0-vector and V is a closed set in m-
dimensional number space containing all the points (xn+(ti),’’" ,X

n+m

(tl)), for U a. We may now pose the above problem in the following
way" Let K0 represent the class of absolutely continuous vector functions
x (t) satisfying

(a) differential equations

2f) 2 gJ( t, X
nq-1

X X 2+’) 2 n.

(b) differential inequalities

h’(t,x
(3’)

jI,

n..-l,c )>=0,

I a countable index set.
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(C) end conditions

(4’) (to,x(to)) 0, (tl,X(tl)) .
Determine if there exists a function x* (t) in K0 which gives the functional

n-t-1I f(t, xl,...,x ,x ,... ,2+m) dt -9 f(to ,x(to),
(1’)

xn(to), t, xl(tl) x(t)

its least value with respect to all functions x(t) in K0.
Generally, the results of this note are simple translations of results

already obtained by MeShane [5] for generalized curves in parametric
form. Thus, we will use the notation of that paper and of the paper of
Botts [1] in our development. The proofs of many of the lemmas and
theorems which we state are already contained in the above mentioned
papers, and we shall often appeal to a particular paper and page number
for a proof. It is not the purpose of this note to establish new theorems,
but only perhaps to draw attention to this method in the calculus of varia-
tions of analyzing problems in optimal control.

1. Properties of generalized curves. Let x, r be v-vectors and a real
number. Let Irl stand for the Euclidean length of the vector r. Let Q be the
set of all continuous real vulued functions (r) defined for all r. We con-
sider a class of functionls defined on Q with the following properties"
(5) is linear; that is, for each pair of real numbers al, a2 and each

pair of functions ., 2 Q, ’(O11 + Ot22) Or1 (@1) -iF" a2

(6) (1) 1
(7) is non-negative; that is, if >= 0 then : () >= 0
(8) is determined by the values of on bounded set B(JI) of wlues

r; that is, if , Q and (B) (B) then () 1 ().
The following two lemmas are immediate
LMM 1. is determined by the values of on B if and only if ()
0 for every function Q which vanishes on B.
LEMMA 2.
(a) () <--_ J() if l(r) -<-... 2(r) for all r B.
(b)

(d)/f n -- uniformly on B, then limn-(R) () ().
We are now ready to define a generalized curve. For background and a

heuristic discussion of these objects, see [5; pp. 513-515].
D]FINITION 1. A generMized curve (hereafter referred to as GC) is a

system consisting of a vector function x(t) (x(t), x(t)), to -<_
<= t, a subset M of the interval [to, t] of measure t- to, and a one
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parameter family of funetionals (t;
in Q with the properties;
(9) The functions xi(t) are absolutely continuous on [to, tl] with finite

derivatives on M.
(10) For each in M, rc(t; ) satisfies (5) (8).
(11) For each. tin. M, and for q(r) ri,rt(t;) 2(t),i 1,2,...,

(we write (t; r) 2(t) ).
(12) For each ,, in Q, rc(t; ) is measurable on M.
The closure of M is denoted by
We denote a GC by

C*" Ix(t), rc(t; ), M].

The ordinary curve in -t- 1 space defined by the functions x(t), to <=
<- tl, i 1,2, , is called the track of C*.
DEFINITION 2. Let F(t, x, r) be a function defined and continuous for

all x, r and for all t; to N <= tl. Let C*’[x(t), NC(t; ,), M] be a GC. Then

J(C*) ft t rC(t; F(t, x(t), r) dt,

provided the integral exists. We adopt the convention that the function
rc(t; F(t, x(t), r)) 0 on the complement of M.
REMK: If one considers the space of absolutely continuous vector

functions x(t) (x(t), x,(t) on [to, tl], with the uniform metric,
then the only integrals

t
F( t, x( t) 2( t) dt

which are continuous are those whose integrand functions F are linear in
2(t). With the introduction of generalized curves, one can make every
integral continuous (definition 4) while still retaining eolnpaetness (Theo-
rem 1). A generalized curve is essentially an. absolutely continuous function,
together with an "average value" NZ computed at each value of F(t, x(t),
2(t) ), with this value then being used to compute the integral of F along
C*. The following example will illustrate" Let x be a sequence of real
valued continuous functions on [0, 1] defined as follows:

x nnl
linear

t=0,2 4
2-- 2n

,1

1 3
2n 2n

on

2n-- 1
2n

/ 0,1, ,2n 1.
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Then 2(t) is alternately -t-1 and -1. If F(t, x, 2) is any continuous
integrand, then

F(t,x,(t),e(t)) dt IF(t, 0, 1) -- F(t,O,-1)]dt.

For each function x(t) we define
(t, F(t, x,(t), r) F(t, Xn(t), n(t) ), n l, 2,

that is, at each point t, the value of NZ is simply the value of F with the
derivative of x inserted in the third argument. [In case this is the rule for
computing the functional )rC, the generalized curve will be called an ordi-
nary curve (definition 8 and lemma 10)]. For the curve x0 (t) 0 0 <

1
If(t, xo(t), 1) -t- F(t, zo(t), --1)],_<_ 1, we define o (t; F(t, xo(t), r) -Then

lira n(t; (Ft, x,(t),r)) dt j 0(t; F(t, xo(t),r))dt
,0 ’0

’- i2)1/2Let I1, r stand for (1 -t- A.,=tr then
DEFINITION 3. If i)rC(t; I1, rl) is summable, we say that C* is rectifiable

and its length is given by

L(C*) (t;ll, r [) dt

LEMMA 3. If C* is rectifiable, then so is its trac]c and

1,2(t)1 dt <= (t;[1, r I)dt. [1,p. 376].

LnMM 4. If C* is a GC, and (t, r) is defined and continuous .for all
[to, t] and all r, then .7(t; (t, r)) is measurable on M. [5; p. 517].

We assume henceforth that the determining sets for our class of GC’s
are uniformly bounded, that is,
(13) there is bounded set B R such that for ech C*:[x(t), ’(t;

q), M] and for each in M, B is a determining set for l(t; ).
This assumption implies that the derivative of the track of C* is bounded
on M, and that C* is rectifiable.
REMnK 1: The assumption (13) is not so restrictive as applied to

control problems. For example, we shall see that if the control vector of the
introduction is constrained to lie in a bounded set of R", the corresponding
determining sets for the problem are automatically uniformly bounded.
LEMMA 5. If C* i8 a GC and F(t, x, r) is continuous on [to, t] X R X

R, and (13) holds, then the integral

J(C*) (t;F(t,x(t),r)) dtexists. [l.,p. 376].
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REMARK 2: If (13) does not hold but it is supposed only that C* is
rectifiable, then the conclusion of Lemma 5 does not follow. For example
consider the ordinary curve (in E2)x(t) %/t(1 t) + tan-1 X/t/1
0 _<_t_<_. 1, hen f %/1 + 22(t)dt 2, however f. (1 + :(t))does not

exist.
We shall presently discuss families of GC’s wih he propery ha if

Cl*:[Xl(t), ,Cl(t, (9), M1], C2*: D2(), 2(t, ), J2] are two members of the
family, the intervals , may be different. However, each family we
shall discuss will have the property;
(14) there is an interval It0*, t*] such that the set M for every member of

the family is contained in [t0*, t*].
If C*:[x(t), (t, e), M], [to, t] is a GC and [to*, t*] is any interval
with the property to* to tl t*, it will be convenient to extend the
definition of C* to the set [to*, to] U M U [t t*] in the following way"

Define

x(t)
(t) ,(t0)

,(t)

[ (o)

[to,
[to*, to]
[tl tl*]
tM
tM--M.

With this definition, the system 0"" [2(t),i(t; ), ] is also a GC.
We adopt the following definition of convergence of a sequence of gen-

eralized curves [5; p. 518].
1)EFIITION 4" The GC Co*’[Xo(t), .go(t, o), Mo], o [to, tl] is the

limit of the sequence {C*’[x(t), NZ(t, ), Mn], n [tOn, tin]} of ten-
eralized curves if

(a) lim {I tOn- to q- Itln- tl -’
(b) for every integrand F(t, x, r)

XRXR

sup Cn(t) O(t) I} 0
te[to*,tl*]

which is continuous on [to*, tl*]

tln ft tt
lim l(t;F(t,x(t),r)) dt o(t;F(t, xo(t),r)) dt.

On

DEINITION 5" The generalized curves C*’[xl(t), (t; 9), M],

xr.t [to,, tn], C*’[x(t), Jg(t; o), M], r2 [to, tl]

are identical if

to.- to= + Itl,- t. I-t- sup x,(t) -,(t) o
ta[tol,tO2]
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(b) for every integrand F(t, x, r)
XR’XR

which is continuous on [t0, till

tll

01

l(t;F(t, xl(t),r)) dt ft t12

O2

2(t; F(t, x2(t),r)) dt.

With the definition 4, if F(t, x, r) is continuous, then the integral J(C*)
considered as a functional on the space of generalized curves, is con-
tinuous.
The following lemma which will be useful in the proof of the compactness

theorem is immediate.
LEMMA 6. Referring to definition 4, if (a) is satisfied, and if

limit (t; F(t, 2(t), r) dt ft t*O*
o( t, F( t, 2o(t), r) dt

for every function F(t, x, r) continuous on [to*, t*] X R X R, then (b) is

satisfied.
TnoM 1. Let A be a compact set in R, and let T be a compact interal

of the real line. The set of generalized curves whose tracks lie in T X A and
which satisfy (13) is sequentially compact.

Proof: Let {Cna’[Xn(t), [n(t; ), M], [/On, tln]} be a sequence of
generalized curves satisfying the hypotheses of the theorem. Let B R
be a compact set which serves as a determining set for each C*. Let T’lt" to*
_<_ <= tl*}. For convenience denote the set T X A X B by W.
Since T A is compact, we may select a subsequence of the C*, retain-

ing the notation of the original sequence, so that to, x(tOn)} converges
to a limit as n -+ .

Select further subsequence, (retaining the notation) so that tln,
x(t)} converges to a limit as n -- .Extend each C* in this last subsequence to C If we can extract a sub-
sequence of the (* which converge to a limit GC ( * then by Lemma 6
the corresponding C* will converge to Co*. Because of the hypotheses of
the theorem we need to consider only those integrands F(t, x, r) which are
defined and continuous on the compact set-W. With this in mind, and with
minor changes in notation, the remainder of the proof follows exactly s
in [5, pp. 522-525], and will not be repeated here.

2. Existence theorems. Let K denote a specified class of generalized
curves. Let F(t, x, r) be a continuous integrand. Let m denote the g.l.b, of

J(C*) :(t; F(t, x(t), r)) dt for C* K.

DEFTON 6" A "minimizing sequence" is a sequence of generalized
curves C*, C* K such that lim_ J(C*) m. The following assump-
tion is basic for our purposes
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(15) There exists a minimizing sequence Cn*l satisfying (13), (14) and
such that the track of every Cn* lies in a compact set [to*, tl*] X E,
ER.

TIEOIEI 2. Let K be a closed class oj" generalized curves. Let F(t, x, r)
be continuous on [to*, t*] >( E X R. Let (15) hold. Then if K is not empty
it contains a GC Co* such that J(Co*) <= J C*) for all C* in K.

Proof: Let (C,*} be a minimizing sequence. By Theorem 1, there is a
subsequence (suppose it to be the whole sequence) which converges to a
GC Co*. Co* K since K is closed, and

lira J(C*) ,1 (C0) m

since the integral is continuous. [5, p. 527]
REMAIK 3" Let g be a function defined and continuous on a closed set

G in R+. Let the hypotheses of Theorem 2 be stisfied. For each curve
C*" Ix (t), (t; ), Ml, 3r [to, t], let (t0, x(t0), ti, X (t)) G. Then if
K is not empty, it contains a GC Co* for which the functional J(C*)
-t- g(t0, x(t0), t, x(t) assumes its minimum value relative to the class K,
since to, x(to), t, x(t) are continuous functionls on the class K.
We investigate now some conditions under which the hypotheses of

Theorem 2 are stisfied. If G(t, x, r) is a given continuous integrand, let K
be the class of all generalized curves satisfying

(*) ,(; a(,x(),r)) dt=

where is a given const,unt (isoperimetric condition). By the continuity
of every integral, if I(C,,*) and lim C* Co then I(Co*) %
thus the class K is closed.
A differential equntion tony be written as an isoperimetric condition with

the following definition.
DEFINITION 6" If C*’[x(t), (t; ), M] is a GC and f(t, x, r) is con-

tinuous, then C* stisfi.es the differetial equation

(16) f(t, x, r) 0

if

(17) f’ )’E(t; ]f(t,x(t),r)]) dt O.

Thus, the class of generalized curves which satisfy (16) is a closed class.
REMARK 4" A differential inequality h(t, x, r) >= 0 can be written

as a differential equation by the following device" Put f(t, x, r) rain
[0, h(t, x, r)] 0. Thus, any class of generalized curves which satisfies a
differential inequality is a closed class. Since the intersection of any number
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of closed classes of generalized curves is closed, it follows that the class of
generalized curves which satisfies any collection of differential equations
and inequalities is closed [5].
Assumption (15) will be taken up in the next section.

3. Vectors carried by a GC. The concept of "vectors carried" by a GC
[5, p. 529] is useful in formulating existence theorems for optimal controls.
The "vectors carried" re the points r used in computing the function
(t; ). To be precise:

])EFINITION 7: If C*:[x(t), (t; ), M] is a GC and : M, the vector
/ is carried by C* at x(r) if for every non-negative function such that
(’f) > 0 the inequality )(, ) > 0 holds.
LEMMA 7. The set oj’ vectors carried at x() is closed and bounded [5,

p. 530].
LnMMh 8. For each (i M, the value oj’ :( ; q) is determined by the alues

of on the set of vectors carried by C* at x([) 1_5, p. 530].
.LEMMA 9. The GC C*:[x(t), Jl(t; ), M] satisfies the differential equa-

tion f(t, x, r) 0 ij" and only if for almost all in M the equation

(18) f(t, x(t), r) 0

is satisfied for all vectors r carried at x(t) [5, p. 530-531].

4. Existence theorems for optimal controls. Ia this section, we first
state conditions which assure the existence of a minimizing GC for problem
II of the introduction. These conditions are then strengthened so that the
minimizing GC for that problem is an ordinary curve or, in the language of
problem I of the introduction, that n optimal control exists. The relation-
ship between ordinary curves and a subset of generalized curves must first
be established.
DEFINITION 8: A G( C*: Ix(t), )(t; ), M] is tn isomorph of an ordinary

curve if for lmost 11 in M, the value of the functional V(t; ) depends
on the value of at a single point rt. [5, p. 519].
LEMMA 10. If the ordinary curves C and the isomorphs C* of ordinary

curves are put into correspondence by letting each C* correspond to its own
tracl the correspondence is one-one, and for every continuous integrand
F(t, x, r),

tl ft tl

(19) 5(t;F(t,x(t),r)) dt F(t,x(t),2(t)) dt.

Proof: If {tiC(t; o) depends only on the value of (r) at r rt, then by
(10) cJK(t, o) g(rt), and by (11), if o(r) r, then rt 2(t). Hence,
if F(t, x, r) is a continuous integrand, we have



EXISTENCE OF OPTIMAL CONTROLS 255

(t;F(t,x(t),r)) Jl(t;F(t,x(t),r,... ,r))

F(t, x(t), rt ,... rt) F(t, x(t), l(t),
F(t, x(t), 2(t)).

This holds for almost all in (to, tl), so (19) follows by integration. Let two
isomorphs 1 C2" of generalized curves both correspond to C’x x(t),
[to _-< =< tl], then by (19) J(C*) J(C*) for every integrand F, hence
by Definition 5, the generalized curves C* nd C* are identical, nd the
lemm is proved [5, p. 519].
RM.RK 5" If C*’[x(t), (t; ), M] is n isomorph of n ordinary curve

C’x x(t), to =< -< t, and C* stisfies the differential equation f(t, x, r)
0, then so does C, i.e. f(t, x(t), 2(t)) 0. That is, the track of C* stis-

ties the differential equation in the usual sense. Henceforth we shall refer
to "isomorphs of ordinary curves" s "ordinary curves."

Referring to problem II of the introduction, let x, r be n + m vectors.
Let K0 be the set of generalized curves satisfying (2’), (3’), (4’). Condi-
tion (4’) means that the tracks of the generalized curves stisfying (2’),
(3’) have endpoints in /’0, / respectively. Let [to*, t*] be the intcrwl
described in (14). We make the following assumptions"
(20) There is a compact set E It0*, t*] X R X R which contains

the track of each GC in K0.
--1 q-

(21) Let E {(t, x,.-., x )’(t, x,..., x x ,..., x E}.
) 4- ’+’ (t, x, x rLet 2(t, x, ., x {(r ,. r )’h +

’’, rn+m) O, i I}.
Assume that for each (t,x ,..-,x Etheset2(t,x, ,x
is compact, and that the union of the sets 2(t, x x over all

n)(t,x,... x E is compact.
(22) The functio.ns h, g, f, f0 are continuous in their rguments.
THEOI{EM 3. If Ko is not empty and (20), (21), (22) are satisfied, then

there is a GC Co* in Ko which giz)es the functional

I(C*) r(t;f(t, x(t), x (t), r+ r )) dt
(1’) -- f(to x(to), x(to), t x(t), xn(ti))

its least value with respect to all generalized curves in Ko.
Proof: By Remark 4, K0 is closed. By (20), (21), (22), there is com-

pact set in R which contains every vector (r1, r) satisfying
n--i +m(2’) r g(t, x x r r j 1, 2, n.

Thus there is a compact set E* Rn+’ which contains all vectors
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n+: n+m) 2’ (3’). By Lemma 9,(r, r r r satisfying ), con-
rains the set of vectors carried by each member of K0, and by Lemma 8 E*
serves as a common determining set for K0. Thus the hypotheses of Theo-
rern 2 are fulfilled by K0.
We can now strengthen the previous conditions in order to assure the

existence of a minimizing curve which is an ordinary curve. In addition to
(20), (21 ), (22), we assume also:
(23) for each (t,x,... x /?,thesett(t,x,...,x )isconvex.
(24) The functions g of (2’) have the form

g(t, x n+l n-t--m) go]( n)X r r - tx, X

(25)

+ g(t,x,...,x )r j 1,2,...,n.
i1

(The control appears linearly.)
n--for each (t, x,..., x E the function f(t, x,..., x, r

..., r+’) is convex on 2(t, x, x ).
there exists a minimizing sequence of ordinary curves in K0.(26)

THEOREM 4. If (20)-(26) are satisfied, then there exists an ordinary
curve in Ko which gives the functional (1) its least value with respect to the
class Ko

Proof: Let m be the g.l.b, of (1’) with respect to K0. Notice that m is
finite. Let {C} be a minimizing sequence of ordinary curves. By Theorems
1 and 3 there is a subsequencc (retain the notation) converging to a GC"
C -+ Co*" [x0(t), OZo(t; ), M] with the property that Co* K0 and I(Co*)

rn. We show first that the track of Co* is in K0.
By (5), (6), (11), (24), and Lemmas 8, 9, 10, we see that for almost all
in M,

0 o [(t" r g(/(t, Xo(t), xo(t))

=a gi(t, x0:(t), xo(t) )r’-+) 1 2o(t) go(t, Xo:(t), Xo"(t)

gii(t, X01(t), Xo"(t))2o"+(t), j 1, 2,
i=1

Thus, the derivative of the track of Co* satisfies (2’). For each in M,
the set of vectors (rn+l n+m) 3’,..., r satisfying lies in the convex set
f (t, x01 (t), x0" (t)). By Jensen’s inequality [8] the vector

()To(t; rn+l), )To(t; r+’))
also lies in (t, Xo:(t), Xo’(t) ).
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Thus by (11), the vector (2o+1(t), ..., con+m(t)) lies in 2(t; xol(t),
.., xo(t)) for almost all t. Hence the derivative of the track of Co*

satisfies (2’), (31), and so the track of Co* is in Ko. By Jensen’s inequality
[8] and (25) we have

(27)
o(t; f(t; X01(t), xon(t), r+1, rn-Fm)

>__ f(t; xo(t), xon(t), :on+l (t),""", on+m(t))
for almost all t.

But the integral of the left side of (27) is equal to rn which is the g.l.b.
of I(C*) on K0, hence the integral of the right side of (27) is equal to m,
and the proof is completed [cf. 5, p. 532].
REMARK (3. Theorem 4 appears in only a slightly less general form in

[4, pp. 38-42]. It is interesting to note that the method of proof given here
yields the additional fact; in the lnguage of the control problem the
minimizing sequence of Theorem 4 has the form

{Cal"
ton ton

and a subsequence of {Cn} (retain the notation) converges uniformly to the
track of Co*. But as we have seen, the track of Co* yields the minimizing
curve for the problem, hence the "optimal control" u (u1, .--, um) is
given by

u(t) d ftlim u,k(t) dt k 1,2,...,m.

We shall see shortly that in some instances where conditions are imposed
which assure the existence of an optimal control, that a minimizing se-
quence does not necessarily yield up the optimal control in the above sense.
For the next theorem [11, 13], we drop condition (23) and replace (24) by

(24’) Referring to (2’), for each (t, x, x /, the set of vectors

S {(gl(t, X
nnUl n.-t-m,..-,x ,r ,...,r ),..-,

X1 nUl n--Fro -I-1 -t-mg (t, ,x ,r ,.. ,r ))’(r ,...,r

t(t, x,
is a convex set in R.
THEOnEM 5. /f (20), (21), (22), (24’), (26), are satisfied and if f O,

then there exists an ordinary curve in Ko which gives the functional (1’) its
least value with respect to Ko.

Proof: Let m, {C}, Co* be as in Theorem 4.
As in Theorem 4 we have for almost all in M and all i, i 1, 2, -.., n.



r n+m)0 g0(t; gi(t, Xol(t), Xo (t), r ,...,r

o(t) 0(t; (t, zoO(t), ..., x0 (t), ,r

By (24’) and Jensen’s inequality [8], the vector

gl +mV [Irto(t; (t, xol(t), xo (t), r ,.. ,r ),...,

(o(t; gn(t, Xol(t), xon(t), rn+l, rn-l-m)]
n+lis in S, so there exists vector (at least one for each t) (rt ,...,

rtn+n) (t, Xo(t), Xo(t) such that
n-l--1 n-l-mV [gl(t, xol(t), Xo

(28)
(t, x0’(t), ..., xo (t), r ..., r ].
+ 2o’+(t) however using a lemma ofWe cannot conclude here that rt

Fillipov [13, p. 78], we can construct a measurable vector valued function
u(t) (ul(t), um. (t) such that u(t) n-H n-t-m\

,rt ,...,rt for some
+ *’) satisfying (28). Since the components xon+(t),vector ,rt ,"

j 1, 2, m of the track of Co* do not appear explicitly in the problem,

we may replace these by () dt without changing the value of f0 along

Co*. Thus, the ordinary curve (? (xg(), x0(), ,,1(),

() is in Ko, and is minimizing, and proof completed.the is

R:. 7. If the integrand funetion f 0 but independent of , then
Theorem 5 holds, for the integral along (20* is unchanged by the eonstrue-
tion of . If f 0 and depends explicitly on hen the problem may be
reduced to one in which f =-- 0 by the familiar device of adding another
differential equagion to (2’) and another term (depending only on the
endpoints) to f0.
REMAI{I 8. Except for minor changes, Theorem 5 already appears in

[11, 13]. The assumption (20) implies that the solutions of (2’) (in the
ordinary sense) which satisfy (3’) (4’) are uniformly bounded. Further
explicit assumptions on the form of the functions gi, h couht be made to
assure that (20) holds [4, 11, 13].
Example 1. The construction of u(t) in Theorem 5 indicates that the

minimizing sequence {Cn} may contain no subsequence which converges to
the minimizing curve in the sense of Remark 6. This is indeed the case; let

Ul + U3 1

{ pete pu

2 --1
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I (xl d- x2 dt.

E0 and E1 are the points (0, 0, 0, 1), (1, 0, 0, 0) respectively.
ttere n 3, m 6, the state vector is x(t) (xl(t), x:(t), x3(t)) and

the control vector is u(t) (ul(t), u:(t), u3(t), u4(t), pl(t), p(t)). (Sub-
scripts are used here to denote components of vector.) Each of the
equality constraints on the controls could obviously be replaced by two
inequality constraints of the form (3’). Conditions (20), (21), (22), (24’)
are satisfied, with (t, Xl, X2, X3) independent of (t, xt, x, xa) and S is

1} For thisthe convex setinR S {(x,x:,xa) x + x N 1, x
problem, m 0, and the g.l.b, is attained by taking, for example, Ui(t)- ua(t) ]J, 12(t) u4(t) --1/, p(t) p(t) 1/2. Con-
sider the sequence of controls

Ul(t) u(t) cos 2t
u(t) u4(t) sin 2kt

.P(t), p(t) arbitrary.

This sequence of controls yields a minimizing sequence for the problem,
with

x(t) sin 2kt 1. cos 2t
2k

x(t)
2rlc

x:(t) 1

0 0

2?r2]c2

If we take the limit along any subsequence, there is obtained

limit x. (t) 0 j 1,2,4,5,6,7,

limit I (C) 0.

Thus, one cannot take the optimal control in the sense of Remark 6, for
that control would not satisfy the constraints ul + u3 u: + u4 1
[4, p. 43], [2].
]EMARK 9. If the hypothesis of Theorem 3 are satisiied, and if there is

no ordinary curve in K0 which minimizes (1’), then the curve in (n + 1)
space defined by xo’(t), x0"(t), to -< t, where the Xo(t) are com--

ponents of the track of Co* of Theorem 3 has been called an "optimal slid-
ing state" by R. V. Gamkrclidze [2].
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ON THE EXISTENCE OF OPTIMAL FEEDBACK CONTROLS*

T. F. BRIDGLAND, JR.

Introduction. Of the considerable number of papers dealing with prob-
lems of optimal control which has appeared in the recent past, most con-
tain little more than passing mention of what has been called "the synthesis
problem", i.e., the problem of expressing the optimal control as a func-
tion of the state of the system being controlled. LaSalle [1] comments
briefly on the synthesis problem in connection with time-optimal control
and Harvey [2] applies LaSalle’s ideas. ,A few other studies of the synthesis
problem in special cases exist, but the most detailed study of this problem
to date is that contained in Berkovitz’s comprehensive treatment [3] of
the gestural problem of optimal, coltrol. However, in [3], as in other studies
of optimal control, the synthesis problem-is subordin::ted to the more
general "open-loop" problem.

In n recent report [4], Klmn has resurrected a little known technique
due to Carath(odory [5, pp. 198-201.] which was originally devised for the
purpose of obtaining sufficient conditions for the existence of extremal
arcs in tile simple problem of the clculus of vriations. Formally stating
this techIfique as lemm, Kalmn points out its applicability to the
synthesis problem. Tile results of [4], in the min, constitute a straight-
forward extension of those of [5], the mjor point of departure being the
introduction of differential side constraints of tile form usully associated
with problems of optimal control.
The major virtue of tile CamthSodory technique is that it permits

direct approach to the solution of the synthesis problem; its major short-
coming, s manifested by the presentations in [4], [5], is the excessively
onerous re(luirement of differentiability for the admissible controls and
the functionls to be minimized. In this paper, we show that the Car-
th(odory technique is vlid under much weuker restrictions thnn those
assumed in [4] and [5], thereby largely eliminating the shortcoming of the
technique while leaving its -virtue untouched. Our principal results con-
sist of necessary and suticicnt condition,s for the existence of unique
feedback control which extremizcs a given criterion functio.al detined
o,. the space of trajectories of control system of genernl type.

Formulation of the optimal control problem. For each to >_- 0, we shll
denote by I(to) the hlf-line It to -< < } and by _(t0), the one-point
compactification of I(to) obtained by adjoining the point t infinity.

* Received by the editors January 22, 1963 and in revised form May 12, 1963.
[ The Martin Comp,ny, Denver, Colorado :nd Universiiy of South Crolim.
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When to 0 we shall write briefly I, i. R will be used to denote real
Euclidean/c-space.

Consider the differential equation

(1) g(t, y)

where y, g are vectors in R. An equation (1) will be said to be of class A
if it possesses the following properties:

(A). for each (t0, y0) I R’, (1) possesses a sohltion (in the sense
of Carath6odory), y(t; t0, y0), satisfying y(t0; t0, y0) y0, which is
unique, continuous in the pair (t0, y0), eontinuable to all of I and such
that, for fixed (t, t0), it satisfies a Lipsehita condition with respect to
y0 in each bounded region of R’’.

All of the differential equations considered in this paper will be assumed
to be of class A. The results on. optimal controls to be derived in the sequel
may be established under less stringent conditions than those of (A) but
to pursue these generalizations in detail would tend to obscure the central.
results of the paper.
We assume the existence of a control set, U, which, comprises the totality

of functions, u(t), on I to R, m <_- n, having values in a given bounded
subset, P, of R and having components u(t), i 1, m, which are
measurable. The control system with which we shall be concerned is
sumed to be described mathematically by an n-vector differential equation

(2) :f(t, x, u(t)

which, for each u - U, is of class A. We shall need to consider a (feedback)
system related to (2),

(3) f(t, x, 0(t,

which is also of class A. We shall consistently use the notation
x(t; to, xo, u), 2(t; to, x0) to denote respectively the solutions of (2), (3)
passing through the point (t0, x0).

In order to state the problem of optimal control with which we shall be
concerned, we must introduce the following notation. Denote by C the
set of all absolutely continuous t’unctions on I to R and by S, the set of
all bounded, measurable functions, on I to R, for which (2) is of class
A. Evidently U S. We assume the existence of functions R(t; x, v) on
i X CX StoR andt(x v) onC X S to . We may then define a func-
tion Q(x, v) on C X S to R by

Q(x, v) R(t(x, v) x, v).

For given (to, x0) I X In, the differential equation (2), together with
the initial condition x(to to, Xo, u) xo, determines a mapping of S into
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C. Denoting by xv the image, under this map, of v S, the problem oj’
optimal control is, given (to, Xo) I X Rn, to detcrmine the set of conlrols
U* c U for which Uo U* implies that

(4) Q(xuo no) min Q(xu, u)
U

when this minimum exists. Such a u0 will be called m optimal control.
In view of condition (A), the i’unctionls Q, depend only on to, xo, v,

while the functional R depen_ds only on t, to, Xo, v, so that, henceforth, we
shall write these t’unctionals in the following forms, respectively"
Q(t0, x0, v), t(t0, x0, v), R(t; to, xo, v). In the sequel, Q will be styled a
criterion; R, a generator, and , the final time. In addition, the range of

will be restricted to [(t0).
It is important to recognize that, in most control problems, the differ-

ential equation (2) and the control set U are the fundamental entities
which arc known and that the subsequent selection of a generator man.i-
rests a desire to determine a control, u0, which is optimal relative to the
entire control set U and not just subset thereof. This brings us to a dis-
cussion of the final time, .

Trivial examples of are th.e following"

t(to, Xo, u) T, to < 7’
(5)

T < /0;to

t0,x0,u) to

where in both cases, T is a positive constant. Both th.ese examples provide
hstances of optimization (i.e., determination of an optimal, control) on
th.e basis only of the behavior of the solutions of (2). Suppose, however,
that one desires the solutions of (2) to lie in a set G (which may depend
on t) at some poin.t h > to and that one wishes to optimize relative to a
criterion that depends on the value h. A natural impulse is to set
t(to zo u) equal to the least value tl for which z(h to, Zo u) G, but
it is easy to construct examples in which such a h does not exist for any
u U, and others in which it exists for some u but not others. One is
thus confronted with the problem of defining a t(t0, x0, v), on all of
I X R X S, which depends meaningfully and nontrivially on the target
set G(t).
We next demonstrate the existence of a a which satisfies the require-

mcnts of our statement of the optimal control problem and which at the
same time permits the formulation of a particular problem of optimal
control which has been of engineering interest for several years but has
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not yet received adequate mathematical treatment. The problem referred
to is called the minimum miss distance problem, and in this problem, as
we shall point out, it is possible to imbed several control problems of cur-
rent interest.
To start with, let a denote the class of all nonempty compact subsets

of R". If p(a, b) denotes the distance between a, b Rn, where p is the
metric induced by the Euclidean norm (denoted 11. ]l) in Rn, then the
distance, O(a, B), between a point a R and a set B Rn, is defined by

O(a, B) minp(a, b).
be.B

An s-neighborhood of a set G tt" may then be defined by

N(G) {x R O(z, G) < s};

as a conse(luenee, tY" may be metrized by detining the (Hausdorff) distance,
d, between G, H 2 as

d(G,H) inf{sIG c N,(.H) and g cN(G)}.

The set {t"; d} is a metric space in which R is isometrically ilnbedded. A
eontimous function, G(t), on I to {ft; d} will be called a target set (ef.
[6]).
LEMMA 1. O(a, B) i8 continuous in R X
Proof. Let q, ri R and G, H f be such that p(q, r)

d(G, H) < e/2; choose /. G such that p(q, "1,) O(q, G). Since there
exists v H such that o(’, n) _-< d(G, H), it, follows by the triangle law
that

O(r, tI) _<= p(r, v) =<:: p(r, q) + p(q, "y) -4- p(/, ,) < e -at- O(q, G).

The conclusion follows by symmetry from this inequality.
By virtue of Lemma 1, the function p(t; to, Xo, v), which is identical

to O(x(t; to, Xo, v), G(t)) on I(to) and whose value at is defined
to be lira inf_. O(x(t; to, Xo, v), G(t)), is lower semicontinuous on I(to).
Consequently, it is meaningful to define a miss distance, i(t0, x0, v), as

ti(t0,xo,v) rain p(t;t0,x0,v).
teV(to)

Thus it is clear that the set

T {t (to)] p(t; to, xo, v) a(t0, Xo, v)}

is nonempty and bounded below (by to) so that it has an infimum,
t* t*(to, Xo, v); it is a trivial matter to show that t* T. (In fact, T is
closed.) Since t* is defined throughout I X R * S, it satisfies our require-
ments as a candidate.
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The minimum miss distance problem cited previously is now formulated
by putting t* and taking R(t; to, Xo, v) p(t; to, Xo, v). It is in-
teresting to observe that the set U** U*, of optimal controls for which
p(t*; to, x0, u) 0, is coextensive with the set of controls u for which
the corresponding solution of (2) lies in G(tl) at some time tl. Conse-
quently, if U** contains an element u** for which

t*(t0,x0,u**) rain t*(t0,x0,u),
uU**

then this control u** is evidetly a solution to the time optimal control
problem [1 ].

Some fundamental lemmas. In this section we state several fundamental
results which will be essential in the establishment of our principal theorems.
In the next lemma, which generalizes [7, Lcmma 2.4], t0, , will de-
note, respectively, Lebesgue measures in I, R" and I X Rn; is the com-
pletion of the product measure p0. X t in I X R[8]. Before stating this
lemma, we establish the following statement which will play a key role
in proving it"

(a). ij" g(x) is a function from R onto itself which, in each bounded
region of Rn, satisfies a Lipschitz condition, then a set E R satisfies
t(E) 0 only if t[g(E)] 0.

Suppose first that E is bounded. Since t(E) 0, for every > 0 there
exists a sequence, {I}, of open n-cells such that E is contained in their
union and E==I tl(I-e) < (21C%//)-ne, where lc is the Lipsehitz constant
[9, p. 107]. Fixing e for the moment, we recall [9, p. 18] that for each m,
I is the union of a countable collection, C:}, of disioint, half-openn--cubes,

C, of theseeach of diameter d I, is also the union of the closures -n-cubes. Clearly, 1(I, E3"=1 tl(Cmj), where (C,-) (d/V/n)
Consider now the set J g( ,) Jm has a finite diameter 0. which,

by virtue of the Lipschitz condition, satisfies 0. =< kd;i. Moreover, there
is an. open hypercube, K,i, with edge length 20,’, such that ,l:. .K:.
We derive immediately

gl(K.)

and there follows

,.(K:)
m,j==l m=l

Since g(E) is contained in the union of the K% nd is arbitrary, we con-
elude tl[g(E)] 0. If E is unbounded, it may be expressed as the union
of a countable number of bounded subsets and the preceding result ap-
plied to ech of these subsets. The ssertion (a) is thus established.



REMARK. Although it appears that (a) should be well known, the most
nearly similar assertion the author has found is that of Apostol [10, Thin.
1.0-8]. H. G. Hermes has pointed out to the author that, under slight addi-
tional restriction of g, a proof of (a) may be based on Lemmas 6.1, 6.2
of [11].
LEMMA 2. Let y(t; to, yo) denote a solution of (1) with to fixed; then a

measurable set M c I(to) X R has (p2) measure zero if and only if, for
almost all 7 - .Rn, the set

HM[7] {t I(to)[(t, y(t; to, 7)) M}

has (o) measure zero.

Proof. We follow closely the proof of [7, Lemma 2.4]. Assuming to 0,
without loss of generality, it i’ollows from the earlier assumption that (1)
is of class A, that

.(t, 7) (t, y(t; O, 7))

is a h.omeomorphism of I X R onto itself, with inverse given, by

-’(t, ,) (t, y(0; t, )).

Suppose first that (M) 0; then there is a Borel set M, of measure
zero, containing M. Since ,I is a homeomorphism, -(.) is a Borel set
and, by [8, p. 39], the sets 21t, (-(21))t, defined by

are (tl) measurable for almost all and (Mt) 0 for almost all t. From
these last equations it is easy to deduce that

(7) (’I’-(2t))t {7 R"[7 y(0; t, 70); 70 21).t}.
Ii’or fixed I, 7 y(0; t, 70) is a homeomorphism of R onto itself with
inverse given by v0 y(t; O, 7). By virtue of condition (A), both the direct
and inverse maps satisfy a Lipsehitz condition in each bounded region of
Rn; it is thus a consequence of (a) and (7) that (Mt) 0 if and only
if t((,I-(’.))t) 0. The fact that t((,I-(il))t) 0 for almost all
t i implies [8, p. 40] that (,I,-()) 0. This in turn implies
t((’I-())) 0 for almost all 7 R and, since

there results t0(H [7]) 0 for almost all 7 R. The converse is obtained,
mutatis mulandis, by reversing the steps of this proof.
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A function V(t, x) on I X R to R is said to be locally lipschitzian
if to eacht I and every r > 0there correspond ti (t-, r) > 0, K

K(t, r) > 0 such that It tl < , x <= r, i 1, 2, imply.
V(t, z1) V(t, x2)[ K Xl x2 I[, loy continuous, locally lip-

schitzian function V(t, x), the Yoshizawa (Y-) derivate by virtue of (2)
is defined as

Denoting by D+m(t) the upper right hand derivative of m with respect
to t, we have almost trivially
LEMMA 3. For almost all i,

D+V(t, x(t; to, Xo, u) V+(t, x(t; to, xo, u); u).

A continuous, locally lipschitzin function V(t, x) is sid to be (locally)
absolutely continuous uniformly (acu) at a point, (t’, if there exists

Xp p(t’, > Oand, for > O, there exists (e) > O such that on
any iinite set of disjoint intervals (t,, t, + ,) satisfying

5 > O, <

wc have

t’- p t,,,, + , _<= t’ + p

for every sequence satisfying
LM 4. [12] If V(t, x) is acu, then V(t, x(t) is an absolutely continuous

function oft (: I, for every absolutely continuous x(t).
In the sequel, a continuous, locally lipschitzian, cu function V(/, x)

on I X R to R will bc called a gauge function.
The final concept which we wish to introduce i.n this section is that of

determinacy. Let the function L(t, x, 9) on I X R X R to R be such
that, for every bounded, measurable u(t) and every absolutely continuous
x(t), L(t, x(t), u(t)) is intcgrable in the sense of Lebcsgue on every
bounded, measurable subset of I. L(t, x, 9) will be said to be determinate
if it satisfies all the following conditions"

(i). there exists a function 0(t, x) on 1 X R to R for which 0(t, x(t)
is bounded and measurable for every continuous x(t) nd such
that L(t, x, qo(t x)) 0 almost everywhere in I X R

(ii). almost everywhere in I X R", the conditions u U and
u(t) o(t, x) together imply L(t, x, u(t)) ) 0;

(iii). with this 0(t, x), (3) is of class A.
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Instead of requiring that (i), (ii) hold almost everywhere in I X R’, we
may require that they hold almost everywhere in some subset D I X R’,
in which ease we need require only that (3) satisfy condition (A) in the
set D. In this event, we shall speak of "determinacy in D".

Let us now define the set B as

(8a) B= {(t,x) IXRIf(t,z,u) >t for some u U};

with each (t, x) B there is associated a set U(t, x) U for each Ineml)er

of which the inequality in the definition of B is satisfied. Then, corre-
sponding to a given determinate function L(t, x, f), we may define the
set B B as

(8b) {(o, :o) . o(t, (t; to, xo)) U(to,

It is a consequence of the definition of t* that, for fixed (to, xo, u),
t* (t, x (t; t0, Xo, u), u) t* (to, Xo, u) for all [to, t* (to, xo, u) through-
out the remainder of the paper, we shall assume that this property holds
for arbitrary flmctions .

Optimal feedback controls suNcient conditions. Our first theorem is
a formal statement of the generalization of the CarathSodory techni(luc
[5, p. 198].
TOtEM 1. Let L(t, x, ) be determinate and let R(t; to, Xo, v) bc a

generator for which the following conditions are satisfied"
a) for all(to,xo,v) I X R X N R(to’to xo v) O"
b) j))r each fixed (t0, x0, v), R(t; to, Xo, v) is an absolutely continuous

jnclion oj’ with derivative equal almost everywhere on I(to) to
.(t, (t; to, ’,o, v), v(t) ).

Then it jbllows that
c) for each to I and almot all :co 1", l(t; to, xo, ) O o’n l(to),

where,(t) o(t, 2(t;to,Xo));
d) for each (to, u) 1 X U and almosl all xo R’, ij"

on a set of positive measm’e contained in an inlc’’val [h, tz], then
R(t to, Xo, u) > R(h to, Xo, u). Hence, j’o’r each to i and almost all
xo R for which (to, xo) , the control

(ao) no(t; to, zo) o(t, (t; to, xo))

is the unique optimal control in U(to xo) relative to the criterion (4).
Proof. let M denote the set in I X R for which L(t, x, o(t, x) 0

nd denote by H[xo] the set {t I(to)(t, 2(t; to, Xo)) M}. By deter-
mincy condition (i), (M) 0 nnd, by dctcrminucy condition (iii)
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and Lemma 2, /0(H[xo]) 0 for almost all Xo R. Similarly, denoting
by N the set in I X R for which u(t) o(t, x) implies L(t, x, u(t)) <= 0
and, by Ju[xo], the set {t I(to)[(t, x(t; to, Xo, u)) N}, it is a conse-
quence of Lemm 2, determinacy condition (ii) nd the property (A)
of (2) that #(N) 0 and o(J[xo]) 0 for almost all Xo R".
By b), we have

R(t to, x0, )
(.)

t(t t0, xo, ) L(, x(; to, x,,, ), v()) d.

Furthermore, it is clear that the solutions 2(t; to, Xo) of (3)
x(t; t0, x0, ) of (2) coincide when (t) 0(t, 2(t; to, Xo)).
Hence, L(t, 2(t; to, xo), 0(t, (t; t0, x0))) 0 lmost everywhere on

I(t0), for 11 x0 R except perhaps those in set of mesure zero. From
this and (11), we find by setting t t0 that R(t; to ,xo, ) oI(to) for
lmost ll x0 R nd we hve proved c). The conclusion d) follows in
similar wy from (11).
We now ssert that, for lmost every x0 R, if u U is control

for which R(t; t0, x0, u) 0 on n interval It0, tx] then u(t)
o(t, 2(t; to, xo)) lmost everywhere on that interval. To prove the

ssertion, we note first that u must stisfy

() u(t) o(t, z(t; t0, 0, u))

lmost everywhere (m the interval, for oth.erwise the condition d) refutes
the ssumption that R(t; t0, x0, u) 0. But since (12) holds, the solutio
of 2 f(t, x, u) must coincide with the solution of (3) hence, in (12),
x(t; to, Xo, u) my be replaced by 2(t; to, Xo) which yields the ssertio.
From this fct, the final sttemet of the theorem follows esily.
The next theorem is n immediate consequence of Lemms 3, 4.
TmOnEM 2. If V(t, x) is a gauge ]nction with detertinate Y-deriatc

V+ t, x; ), then the generator R( to, Xo u ), defined by

(3) (t; t0, x0, u) V(t, (t; to, o, u)) V(to,

satisfies the hypotheses of Theorem 1.
An even more general result is the following.
TEOEM 3. Let V(t, x) be a gauge function and let the function L(t, x, )

on I X R X R to R be such that L(t, x(t), v(t) is integrable on every
bounded, measurable subset of I for each bounded, measurable function v(t)
and each absolutely continuous x(t). If L*(t, x, ), defined by

L*(t, x, ) V+(t, x; o) q-- L(t, x, o),
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is determinate, if If(t; to, xo v) is a generator satisfying
) n(t0;t0,x0,) V(t0,0),;
g) II (t; to, x0, v) is an absolutely continuous function of with derivative

equal almost everywhere to

DV(t, x(t; to, xo, v) q- L(t, x(t; to, xo, V), v(t) on /(to);

then the generator R(t; to, Xo, v) H (t; to, xo v) V(to xo) satisfies the
hypotheses of Theorem 1.

Proof. It is a matter of direct verification, taking into ccount Lemmas
3, 4, to determine that the hypotheses of Theorem 1, with L replaced by
.L*, re satisfied by R.

I{EMAt{K. If, in (2), we take f(t, x, u(t)) =--- u(t), then the preceding
theorems are direct generalizations of CarathSodory’s results; in particular,
Theorem 3 is the extension of [5, Satz 2, p. 200]. If in Theorems 2, 3, V(t, x)
be taken to be continuously differentiable with respect to each of its argu-
ments, then V(t, x) is a gauge function. By following Carath6odory’s line
of thought, we may then require that V be a solution, in a certain general
sense, of a Hamilton-Jacobi differentiM equation. We shall consider this
point further in a later section.

Optimal feedback controls--necessary conditions. For the subsequent
statement of the converses of Theorems l, 2, 3, we shall require the fol-
lowing conditions.

I. The set B(vide (8)) has positive t.2 measure and, for each to I and
almost all x0 R such that (t0, x0) B, there is an optimal con-
trol u0 uo(t; to, Xo) U, relative to the criterion Q(to, xo, u),
which is uniquely defined on the interval [to, t(t0, x0, u0)).

I[. There is a function oo(t, x) on I X R to R for which is satistied
o(t, x(t; to, xo, uo)) uo(t; to, Xo) almost everywhere on

[to, t(to, Xo, Uo)) for all (to, xo) for which Uo exists and, for this
oo, (3) is of class A.

ii[. Let to be fixed and denote by ]to the set {Xo R ](to, Xo) - B};
then there exists u* U such that, for almost all Zo Bto,
u*(t) uo(t; to, xo) on a subset of positive measure contained in
[to, (t0, x0, u*) ).

Of course, the criterion Q mentioned in I will depend on the particular
generator chosen, which in turn will be governed by the theorem whose
converse we are obtaining. Note that II implies that determinacy condition
(iii) is satisfied in B. The function u0(t; t, x), provided it is uniquely de-
fined almost everywhere in B, may serve as the function 0(t, x), as can
be readily verified (cf. [13, p. 1_36]). Finally, observe that for the set Bto of
III, there is a set of points to I, of positive t0 measure, for which
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tl(Bto) > 0; this is a direct consequence of the theorem of [8, p. 40], and
the fact that t(B) > 0.
The next theorem is a partial converse of Theorem 1.
TIEOEM 4. If Q(to, xo, u) is the criterion corresponding to the generator

of Theorem 1, if conditions I, II, III are satisfied and if Q(to, xo, uo) 0
then L(t, x, q) is determinate in B.

Proof. From (11) we have

tN(to,xo,u)
(1.4) Q(to,xo,u) J, L(r,x(r;to,xo,u), u(r)) dr

to

and, since this is a criterion of "Markov type" [14, p. 54], the "principle
of optimality" [1_4, p. 57] may be applied to (14.) to yield, by virtue of
I, II,

f(o,o,,o) L(-, x(-; to, o, uo), Uo(-; to, Xo)) d- 0,

[to, (to, xo, u0) ).

This in turn implies that

(15) L(t, x(t; to, Xo, Uo), Uo(t; to, xo)) 0

almost everywhere on [to, t*(to, Xo, Uo)). Now suppose that, for points
t’, t" satisfying to <= t’ t" t(to Xo u), the control u(t) u0(t; t", x")
on [t", t(to, Xo, u)) but that u(t) u0(t; t’, x’) on a subset, of positive
measure, of It’, t"), where x’ x(t’; to, Xo, u) and x" x(t"; to, x0, u).
We then. have from I

t

(t’, x’,u)

L(r, x(-; to, Xo, u), u(r)) dr Q(t’, x’, u) > o.

The statements (15), (16) hold for each to I and almost all xo R for
which (t0, Xo) B.
Having established these facts, let us now suppose that determinacy

condition (i) fails in B. This implies that there is a set M B for which
(M) > 0 and in which L(t, x, 0(t, x)) 0. By virtue of Lemma 2,
this in turn implies that there is a set 0re of points n R for
which. 1() > 0 and such that rt implies o(H.[v]) > 0, where

HM[V] {t I(to)[(t, (t; to, V)) M}.

As a consequence, for xo JE, L(t, 2(t; to, x(,), o(t, 2(t; to, xo))) # 0 on



272 T.F. BRIDGLAND, JR.

a subset, of positive measure, of [to, t(t0, x0, u0)); since E is of positive
measure we have, by virtue of (1.5), a contradiction. Hence, determinacy
condition (i) holds in B.
Suppose determinacy condition (ii) fails in B; then there is a set N c B

such that 2(N) > 0 and such that u(t) o(t, x) at a point (t, x) N
implies L(t, x, u(t) <= O. Let u be the u* of condition III; then by Lemma
2, there exists. c R such that 1(.) > 0 and such that 0(J[n]) > 0
when / ., where

J[v] {t I(to)l(t, x(t; to )) NI.
In. view of con.dition III, there is then a set, X, of positive measure, con-

(t0 x0 u*taied in subinterval [t’, V’) [to, )), on which
u*(t) ,o(t, x(t; t0, x0, u*)) and on ) we then have

(17) L(t, x(t; to, Xo, u*), u*(t)) <= O.

On the complement of h in [t’, t’), we have u*(t) qo(t, x(t; to, Xo u*)
almost everywhere. It then follows by determinacy condition (i) that
(17) still holds almost everywhere on the complement of : in It’, V), ex-
cept perhaps for a set, Y, of points x0 ;, for which ul(Y) 0. Now
(, Y) > 0 and for x0 (, Y) we then know that (17) holds
almost everywhere on It’, t"). Integrating (17) over this interval yields

ft,, L(-, x(r; to, x0, u*), u*(r)) dr _-< 0

which, in view of (16), yields a contradiction. Hence determinacy condi-
tion (ii) holds iu B and, as has been indicated, determinacy condition (iii)
holds in B so that L(t, x, ,p) is determinate in B.
A converse of Theorem 3 is obtained from Theorem 4 by replacing L

by L* -=- V+(t, x; ) -t- L(t, x, ) in the latter theorem. From the converse
of Theorem 3, a converse of Theorem 2 is then obtained by taking L -= 0
in the expression for L*. The converses of Theorems 2 and 3 have state-
ments which are sufficiently obvious that we omit them here. Note that
if, in Theorem 1, we assume B B and that determinacy holds only on B,
then the thus modified Theorem 1 and Theorem 4 are strict converses; a
corresponding statement can be made for Theorems 2, 3 and their con-
verses.

Final remarks. One of the most frequently encountered problems of
optimal control is that in which it is required to obtain an optimal con-
trol relative to the criterion Q(t0, x0, u) defined by

tN to,xo,u

Q(t0, x0, u) .L(, x(; to, x0, u),
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where the fut.ctional L(t, x(t), u(t)) is required to be bounded and meas-
urable for every M)solutcly continuous x(t) and every bounded, measurable
u(t). If L(t, x, 2) is determinate, then Theorem 1 is applicable. If it is
not, then. the problem may still admit a solution if one can find a gauge
function, V(t, x), for which V+(t, x; ) - L(t, x, ) is determinate and
which satisfies the transvcrsality condition

V(t, x) o, (6 x) C(t,,, x0)

where th_e set C(to, Xo) is dclited

C(t0,xo) {(t,x)

ta(to, Xo, u), x x(ta; xo, u) for all u U I.
Under these conditions, it is an immediate consequence of Theorem 3 that

(1<.)) V(t0, x0) rain Q (t0, x0, u).
uU

Conversely, if it is known that there is a gauge function for which (19)
is satisfied, then it can be shown that the necessity of the transversality
condition (18) and of the determinacy of V+ + L is a consequence of
Theorem 4.

In the event that V(t, x) is continuously differentiable with respect
to each of its arguments, then it is a simple matter to show that the re-
quirements of determinacy and transversality are together equivalent to
the requirement that V satisfy the Itamilton-Jacobi equation (vide the
remarks following Theorem 1)

Vt + H(t, x, Vx) 0

with boundary condition (18), where

L(t, x, ) + V.f(t, x, ) lf’)(t, x, V)

is determinate. A method of determining H has been described by l._(alman

[].
The effect of the transversMity condition (18) is to make the value of

t to,xo,u

Jl x(t; to, Xo, u);V+ t, dt

independent of the control u. Thus, a more general approach to the de-
termination of an optimal control relative to the criterion Q(t0, x0, u)
would be the discovery of a functional L(t, x, ) with the same properties
as L and which satisfies the following conditions:

(a) L(t, x, ,) -t- L(t, x, () is determinate;
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t to,xo,u

(b) f L(, x(-; to, Xo u), u() d --(to Xo)

for all u U.

Then if (a), (b) arc satisfied, it follows from Theorem 1 that

It(to,x0) minQ(t0,x0,u).

The use of a particular functional .L1. satisfying (b) has been made the
basis of the methods of Pontryagin [1.3] which, as is well known, stem
i’rom the results of Weicrstrass in the classical calculus of variations.
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RELAY TYPE CONTROL SYSTEMS WITH RETARDATION
AND SWITCHING DELAY*

M. N. O(UZTSnnL
Abstract. In the present paper, we wish to investigate relay type coutrol systems

with retardation and switching delay. For this purpose, we extend some basic results
on the continuation o solutions which are due to J. Andr nd P. Seibert. Also, we
extend some stability theorems of R. Bellman and K. L. Cooke, mking use of their
kernel function representation of the solutions. We also consider the dependence of
the solutions upon switching delay.

1. Introduction. In recent publicatios, relay type control systems have
Tattracted a great deal of attention from many authors., rese control

processes have been described mathematically by systems of ordiuary
differential equations with piecewise contimous right-hand sides.

In a previous paper [21] we investigted a time optimal control problem
for a dynamical system described by a linear differential-difference equa-
tion, and have shown that the optimal, control is "bang-bang." In the
present paper, we wish to investigate relay type control systems with
retardation and switching delay. For this purpose we shall give here a
generalisation of some basic results, especially those of J. Andr5 and P.
Scibert [2]. Since the solutions of a differential-difference equation can be
continued only in the forward direction with respect to time, our method
will be slightly different from that which is used for differential equ_a-
tions.

Let a control system be given by the piecewise liear differential-dif-
ference equation

(1.1) x’(t + h) A(t)x(t + h) + B(t) sgn s{x[(t- r)]},

where is a real variable (time), the prime deotes differentiation with
respect to t, (switchig delay) and the "spaus" h(k 0, 1, m)
re give costats such that

(1.2) 0 h0 < h < h < < h,, > 0.

In (1.1), A(t)(k 0, 1,..., m) are give n Xn matrix functions
analytic for t0, B(t) is given n X r a.alytic mtrix fmction for

to, s(x) is a given r-dimensional aalytic vector function in the n-
dimesionl Euclidean space R, x(t) is an n-dimensional vector function

Received by the editors October 26, 1962 nd in revised form My 21, 1963.
])epartment of Mathematics, University ()f Queensland, St. Lucia, Brisbnne,

Australia.
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giving the state of the control system at time t. The r-dimensional vector
function sgn s is defined by

(1.3) sgn s (san s,, sgn s),

where Sl are the components of s and

+lfors > O,

san & undefined for s O,

[--lforsk < 0.

We suppose that sit and grad sk(x)(k 1, 2, r) do not vanish simul-
taneously at any point of tire space R.
The corresponding uncontrolled system is described by the homogenous

differential-difference equation

(1.5) x’(t + h,,) .-2 Ak(t)x(t + h),
k-=0

which has been_ extensively investigated in literature (see e.g. [5, 8, 10-14,
1.7, 19, 22-27]).

If, in particular, there is no retardation in (1.1) and if the matrices
A0 A and B are constants, we have

(1.6) y’(t) Ay(t) + I3 sgn s{y(t- r)}.

This differential-difference equation has been investigated by J. Andr6
and P. Seibert [2] arid an interesting problem related to (1.6) has been
considered by R. Bass [4]. The differential equttion (1.6) with 0
belongs to the class of differential equations with pieeewise continuous
right-hand sides, which is considered by many authors (see e.g. [1, 2, 3, 6,
9, 15, 17, 19, 20]).

Let us now consider the smooth hyp{rsurfaces S,i in R" defined by the
equations

which are called switching spaces. The space R can be decomposed into
domains D/ and Dff in which s(x) 0 respectively and S. will be tlm
common boundary of the domains D.+ and Dff, j 1, ..., r. Further-
more, we denote

(1.8) S U S., D R’- S.

The right-hand side of (1.1) is discontinuous along the analytic hyper-
surface S.
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Let NZ be the set of all n-dimensional analytic vector functions in the
initial interval to r <= <= to q- h,. The elements of the set 91Z will be
called initial functions or initial conditions.

Following Andr6-Seibert [2d], a continuous vector function x(t) will be
called a solution of the system (1.1) if

A. x(t) satisfies (1.1) in D,
B. x(t) has only isolated points in S.

The solution of the system (1.1) which satisfies the initial condition

(1.9) x(t) rk(t), to <= <= to -t-- h,,
with (t) 31Z, will be denoted by x x(t, rk) or simply by x x(t).

Since, by our hypotheses, the matrix functions B(t) and Ak(t)(lc
0, 1,... m) are analytic fort >__ to, and since s(x) is also analytic, the
differential-difference equation (1.1) has a unique continuous solution
analytic from the right in the neighbourhood of to q- h, which saris-
ties (1.8), if the vector

sg {s[(t0 + hJ )]}
is defined.

2. Continuation of a solution. Suppose that the value (t0 q- h r) of
the initial function (t) 91Z is an interior point of one of the domains D,
say D+"

(2.1) (t0-- h,,- r) D.+.
(Th.e case 4(t0-t-hm- r) D[-can be investigated similarly). Let
91Z- be the set of all initial functions which possess this property. Put

(2.2) e+ sgn {s[(t0 - h r)]}.

The vector e+ has + 1 as its jth component"

(2.3) e.+= sgn {s.[(t0-t- h,- r)]} -+-1.

The solution of (1.1) which satisfies the initial condition (1.9) with
(t) 91Z.+, satisfies the equation

(2.4) xt(t + hm) E A(t)x(t + h) -k B(t)e+,
k--=O

for => to + h. Since this solution is analytic from the right in the neigh-
bourhood of to -t- hm, it will remain in the domain D.+ for some fur-
ther time interval. Let us denote this solution by x+(t, 4)) or simply by
x+(t). Since the solution of a differential-difference equation with retarded
argument can be continued in the forward direction with respect to time,
we have to follow x+(t) for increasing t. Suppose the smallest t( >to + h.)
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for which x+(t) rea,ches the switching space St is T, the point u that it
reaches being given by

(2.5) u lira x+(t,
t-->T--O

Of course, T and u depend on the selection of the initiM function x (t)
from the set .+.

According to our definitions

(2.6) d x+(t _+_ hm) Ak(t)x+(t + h,,) -- B(t)e+
dt

x(t) (t) for to <= =< t0-+- h,.

For the sake of simplicity we shall denote the right-hand side of (2.6) by
F(t, e+)

(2.7) F(t, e+) A(t)x+(t + h) + B(t)e+.

The solution x+(t) cn, with the help of the lcernel matrix representation
due to R. Bellman an.d K. L. Cooke [5c], be expressed as follows"

z+(g + h.) X( + h., 4) + Y(, )B()e+ d,
(2.8)

Here X(t, ) is that solution of the homogeneous (uncontrolled) system
(1.5) which satisfies the initial condition (1.8), and Y(s, t) is the kernel
matrix. Y(s, t) is the unique solution of the adjoint equation

(.9)

(t > to;to < s < t-- h, nd t- h,, < s < t)

stisfying the in.itil condition

(2.10) Y(s, t) s=t,

where I is the identity mtrix. Y(s, t) is defined for > t0, t0 s + h
nd is continuous for t0 s t.

According to (2.4) nd (2.8), we hve

fr- T h,)B(s)e+ ds.(2.)
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Since the function sgn {s[x+(t r)]} is still continuous and equal to e+

in the interval T _<_ < T + r, our solution x+(t, 4)) will continue to
satisfy the same differential-difference equation (2.6) in this interval.
We put

ur lira x+(t,
t->Tr--O

(2.2)

f
Tnt’r-h

X(T -t- r, ) -t- Y(s, T + r h,)B(s)e+ ds.

Of course, the point u,* depends on the choice of the initial function (t)
from the set )rC+. We shall denote by ’+S..T the set of all points u,*. Note
that according to the analyticity in the interval T N < T + r the solu-
tion x+(t, ) can intersect the switching surface Si at most only at a finite
number of points; that is, the intersections of x+(t, ) with Si cannot have
an accumulation point which is reached in the interval T N N T + r.

In order to follow the further continuation of the solution x+(t, )
after T+ r, we have to investigate the behaviour of the function
s[x+(t, )] in the neighborhood of T. For this purpose, we first assume
that the point u belongs to only one switching space Si. Therefore,

se(u) 0 for 1: j, s(u) 0 for lc j.
(.13)

(c 1, , ..., )
Let e- be the vector whose components are equal to those of e+ except for
for the jth, which is equal to -1.
We now consider the following differential-difference equations"

’((2.14) x + h,) F(t,e:)
and put

(2.15) 4l(t) x+(t,) for T- h N N T+ r.

This function is analytic in its interval of definition. Let x+(t, 4) and
x-(t, ) be the respective solutions of these equations which satisfy the
same initial condition

(2.16) x(t) 4,(t) T-- h T + r.

Since all the conditions of the existence and uniqueness theorems for dif-
ferential-difference equations are still satisfied, x+(t, 4,) and x-(t, 1) are
uniquely determined (analytic) functions. Obviously, we have

(2.17) x+(T + r, ) x-(T+ r, 4.) u*,
and from (2.3), (2.15) and (2.16),
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(2.18) lira sgn {sj[x+/-(t,
tT--O

We can easily calculate the following limit

(2.1.9) yj lim sgn {sj[x+/-(t, 1)]}.
t-->T+O

For this purpose, remembering the hypotheses which we laid on the
functions B(t), Ak(t)(k 0, 1,..., m), (t) and s(x), let us consider
the Taylor expansion of sj[s+/-(t, )] at T"

d s[x+(a, b)].=r(t- T)s.[x+(t, )]

1 d(2.20) + ---2 s[z+(a, )],=r,(t T)

c(u)(t T) + ce(T’, u)(t T),
where T is an intermediate value between and T, and where

d(2.21) c(t, u) s[x+(t )], c(u) c(T, u), (i 1, 2).

It can be verified easily that

c(u) F*( T h e+) s(x) F( T h e+)

we denote the operation of transposition, while the operator

(2.24) x’(t -- h,) F(t, e-) for >= T + -.

Here by
d/dx is the gradient when applied to a scalar and the Jacobian matrix when
applied to a vector. The operatior d2/dx’, applied to a scalar, denotes the
Jacobian matrix of the gradient.

Since u is given by the formula (2.11), the quantities c(u) and c(u)
are well defined and they determine the character of the switching at the
point x u. As we noted above, the switching operation actually happens

+ Twhen the trajectory reaches the point x u* ., at time +,

because of the switching delay r.

If c(u) O, on account of (2.18), we have c(u) < O. Therefore,
s. < 0 for > T. Thus, we have the differential-difference equation
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If el(U) O, C2(U) 0 On account of (2.18), we have c2(u) > 0. Thus,
we have the differential-difference equation.

’((2.25) x + hm) F(t,e+) for >- T+ r.

If el(u) c2(u) 0, the sign to be taken will be

lim sgn [c2( T’, u)].
T T.+-0

Let x(t, 1) be the continuation of x(t, 4)) obtained by this manner.
x(t, 1) will clearly satisfy one of the equations (2.24) and (2.25) for

>= T + r arid the initial condition x(t, 4)1) x(t, 4)) for T h, r

T <= 7’ -4- r. Since x(t, ) is analytic for t- h-.r <= <= T-4- r,
the solution x(t, 4)1) is also analytic for some time interval T -4- r -<_
<= T -f- r + o, where o is a positive number. In this interval the solution
x(t, .) may intersect the switching space S at most only at a finite
number of points because of the analyticity of the vector functions s(x)
and x(t, 4)1). Therefore there is no accumulation point in this interval of
the intersections of x(t, 1) with S.

Let us now assume that the point u belongs to more than one switching
space S. To investigate this case generally, consider a domain D whose
boundary S consists of some parts of the switching spaces S1, S.,
S(1 <- i <= r). Let us assume that 4)(t0 + h r) D and denote by
)E, the set of all analytic functions O(t) in to r _-< <= to + h having
this property. In this case, the vector functions sgn {s[O(t)]} is piecewisc
defined for to- r =< =< t0 + h. Put

(2.26) o-= sgn {s[4,(t0 -+- hm- 7-)]} for to- <= to-t-- h..

Each component aj(j 1, 2, r) of has one of the values :t= 1, as be-
fore, and we can apply the same method as we used at the beginning of this
section. Let x(t, 4)) be the solution of (1.1) which satisfies the initial condi-
tion (1.9) so that now x(t, 4)) will take the place of x+(t, 4)). Let
T( >/0 + h) again, denote the first, time at which x(t, 4)) reaches the
switching space S (at point u, say) and suppose that u belongs to the
switching spaces S, S., S.( <= i <= r). Let us now calculate the
limits 3’(j /, k2, ..., k) by the formulae (2.20) to (2.23) and with
the help of these limits calculate the components of the vector

(2.27) lim sgn {six(t, 6)]}.
t-> Tq-O

Therefore, the continuation x(t, 1) Of the solution x(t, 4’) fort >= T + r

will satisfy the differential-difference equation

(2.28) x’(t + h) F(t,
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under the initial condition

(2.29) x @.(t) x(t,) for T-- h, =< =< T+ r.

Since all the conditions of the existence and uniqueness theorems are still
satisfied, x(t, 1) is uniquely determined.
From the analyticity of x(t, ) and s(x), the function x(t, ) cannot

intersect the switching space S at an infinite number of points in the inter-
val of analyticity of x(t, ). Consequently"
THEOREM 1. Each solution x(t, ) of the differential-difference equation

(1.1) which satisfies the initial condition (1.9) with (t) can be con-
tinued indefinitely into the jture, i.e., they have no end-points.

3. Stability properties of solutions. Stability properties of many kinds
of systems with time lags have been investigated in literature (see, e.g.
[Sa, ll, 12, 13, 14, 17, 19, 22, 26]; for a complete bibliography on this
subject see [7] and [19]). We shall now extend some stability theorems
due to R. Bellman and K. L. Cooke [5c].

Let us suppose that all continuous solution X(t, ) of the uncontrolled
system (1.5) are bounded as t +"

where c is a constant. Let the kernel function Y(s, t) and the matrix func-
tion B(t) be of the form

llY(s,t) <c<+, tosser,

where c2 is a constant. Furthermore, let D(t) be continuous n n matrix
functions for -> to such that

(3.4) D,(t) dt < -t-, lc O, 1, m.

In (3.1) to (3.4), Y(s, t) l, X(t, oh) B(t) and n(t) denote
respectively the sums of the absolute values of the elements of Y, X, B
andD,lc 0,1,...,m.

Consider now the differential-difference equation

x’(t -4- h) [A.,(t) -4- D(t)]x(t -t-
(3.5) =0

-[- B(t) sgn {s[x(t r)]}.
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THEOREM 2. Under the hypotheses (3.1) to (3.4) all continuous solutions
o.f the differential-difference equation (3.5) are uniformly bounded as +

Proof. To prove this, following Bellmn nd Cooke, we put

W(t) _, Dk(t)x(t + hk) + B(t) sgn Is[x(t r)]}.
k=O

Continuous solutions of (3.5) can be obtained by the method of previous
section. For a con.tinuous solution 2(t) of (3.5), W(t) is continuous in
every domain D bounded by the switching spaces Sk and is integrable
everywhere. Therefore, by the kernel function representation (2.8) we
have, for >= to,

2(t + h,) X(t) + Y(s, t)Dk(s)2(s + h) ds
k=O

(3.7)

+ Y(s, t).B(s) sgn ls[2(s r)]l ds.

From (3.1) and (3.2) we have

k--:O

thk--h

k0

nd using a well-known lemma (see e.g. [5a], p. 35), we find

(3.9)
k0 ,0

where

(3.10) C Cl "-C2

It follows, from (3.4) and (3.9), that 2(t) is uniformly bounded as
Let us suppose that

(3.1) Y(s,t)11 --< V.(t) for >__ Z0,

where xI,(t) is 8 monotonic decreasing function such that

(3.12) lira ,I,(t) O.
t+oo

In this case, we have the following result"
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THEOREM 3. If (3.3), (3.11) and (3.12) are satisfied, then the solution
x(t, ) of the system (1.1) is asymptotic to the solution X(t, 0) of the uncon-
trolled system (1.5), i.e.,

(3.13) lira x(t, ) X(t, ) O.

Proof. Frown the kernel function representation (2.8) and from the
hypothesis (3.11), we have

If we now make use of the hypothesis (3.3), we obtain

x(t, 4,) x(t, 4,) <
for sufficiently large t. This proves the theorem.

Consider now two solutions of the uncontrolled system (1.5), namely
X(t, O) and )(t, ), corresponding to the continuous initial functions
(t) and (t) in the same initial interval to T <- to -+- hm. Supposing
that the system (1.5) has a Lipschitz constant L, that is, that

(3.1.4) 1 A(t) L for >= to.

Then, as is well known (see [17]),

x(t, 4)) :(t, ) <= ’(’-’)ll 4 *),(3.)

where

(3.16)
t0--r <= to+h

THEOnEM 4. /f (3.3), (3.11), (3.12) and (3.14) are satisfied and if it is
possible to choose a neighbourhood of (t),

(3.17)

such thal

6(3.18) x(t, ) (t, D <, N(),

holds for all sufficiently large t, where is an arbitrarily small positive number
and depends on , then

for (h Na() and for large enough.
Proof. Let x(t, ), 2(t, ), X(t, ) gnd )(t, $) be previously defined
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solutions of (1.1) and (1.5). With the help of the kernel function repre-
sentation (2.8) of the solutions x(t, 4) and 2(t, ) and also of (3.11) we
can write

x(t, ok) Yc(t, (p) -<-- X(t, ok) fg(t, ) -[- 2(t) ftto 11B() ds.

From the boundedness of the last integral, by (3.3), and also from the
hypotheses (3.12) and (3.17), we have, for sufficiently large and

N(),

62<t> 11B<)II d <
2

Therefore,

(3.19) (t, ) (t, ) <
for N(O) and for large enough. To prove the last part of the theorem,
observe that

(3.o)

From (3.13) and (3.19), we have

(3.21) "2(t, ) X(t, O)I1 < 2
for + , which proves the theorem.

+ x(t, ok) X(t, ok) ]l.

for N((),

We note that the above results can be extended immediately to the case
where the system (1.1) is affected by small disturbing forces. In this case
the control system is of the form

(3.22)
x’(t / h,) _, A(t)x(t + h)

-at- B(t) sgn {.s’[x(t "r)]} --[-r(t, x(t) ),
where r(t, x(t)) is a summable function such that

(3.23) r<t, x<t)> <
for all >- to and x and n a small positive constant.

4. Limits of the solutions of (1.1) as the retardations and switching
delay approach zero. Let D be any domain bounded by the switching
spaces S and let 4)(t) - ), where i)E. is the set of all analytic functions
in D for to =< =< to + h,. Consider now the distance between the points
u and u* defined by (2.11) and (2.12). We have
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? u X(T -Jr- , ) X(.i’, dp)

(4.1) -t- [Y(z, T + r- h) Y(, T- h.)]B()e+ d

T+r--h

+ Y(s, T + r h)B(s)e+ ds
T--hm

Let e be an arbitrarily small positive number. From the continuity of
X(t, ), Y(s, t) and B(t) we can write

and

X(T + ,0) x(v,) <= ,

for <
3c2 C3

where c is given by (3.2) and

ca Sup B(t) II,
to_tT

Therefore, if

(4.2) t < 3c2 ca’
we have

(4.3) ,* u < for

By the same argument we see that

(4.4) lira x,.(t,

where x,(t, r)) denotes the solution of the system (1.1) with the switching
delay r. Obviously these results are also true for any continuation of
x,(t, ) according to the method given in section 2.

R. Bellman and K. L. Cooke showed [5d] that

(4.5) lim x(t, ) y(t),
hm-->O
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where y(t) is the solution of the equation

(4.6)
y’(t) A(t)y(t) -- B(t) sgn {s[y(t )]},

y(to) (to), A(t) A,(t),

and the convergence is uniform for some interval to =< _<_ T0, provided
we stay in a domain D bounded by switching spaces. The equation (4.6)
is of the form (1.6), which has been investigated by J. Andr6 and P.
Seibert [2]. Clearly, this limiting process may be accomplished for any
continuation of x(t, 4) beyond the domain D by the method of section 2.
The solution of (4.6) gives an approximation to the limiting behaviour
of the solutions of (1.1) for sufficiently small time lags.

5. Acknowledgment. The author wishes to express his appreciation to
Dr. P. Seibert for his helpful comments and to the referee for his valuable
remarks.
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A TIME OPTIMAL CONTROL PROBLEM FOR SYSTEMS
DESCRIBED BY DIFFERENTIAL DIFFERENCE

EQUATIONS*

M. N. O(UZT)RELI
Abstract. The aim of this paper is to establish the solution of an optimal time

control problem for a physical system whose state is described by a linear differ-
ential-difference equation with retarded argument. We have obtained here a generali-
sation of the results of Bellm:m and his collaborators Glicksberg, Gross and Kalaba,
and of LaSalle and Neustadt by using a technique due to LaSalle, with the help of
the kernel matrix representation of Bellman and Cooke and also a new integral
representation for the solutions of linear differential-difference equations.

1. Introduction. We consider a control system given by a linear differ-
ential-difference equation with retarded argument of the form

(1.1) x’(t -- h,,) A(t)x(t - h) -- B(t)u(t) - f(t),
k--O

d
where is a real variable (time), dt’ h (l O, 1, m) are given

constants such that

0 h0 < h. h h,

A(t) (1 O, 1,..., m) are given n n continuous matrix functions,
B(t) is a given continuous n r matrix function, x(t) and f(t) are n-di-
mensional continuous vector functions, x(t) giving the state of the control
system at time t, and u(t) is an r-dimensional vector function. We suppose
that to control our system we are free to choose the "steering" function u.
We assume that the functions u(t) are "admissible" if they are piecewise
continuous (or measurable) and have components less than 1 in absolute
value’lug(t) --< 1, k 1,...,r.
We denote by U the set of all r-dimensional vector fuctions u(t) meas-

urable on each finite interval [to, t] and u(t) -<- 1, k 1, r. Let
U be the set of all functions u(t) in U with lu(t) 1,/ 1, r.
The set U is the set of allowable steering functions for our control problem,
and U is the set of "bang-bang" steering functions.
We denote by S a compact closed (bounded) convex subset of tle set C

of all real-valued n-dimensional continuous vector functions in the interval
to --<-- <= to + h,.

* Received by the editors August 8, 1962 and in revised form July 31, 1963.
Department of Mathematics, University of Queensland, St. Lucia, Brisbane,

Australia.

290



TIME OPTIMAL CONTROL 291

A solution x(t) of the system (1.1) which satisfies the initial condition

(1.2) x(t) 4)(t) to <= <= to + h,,

eivdently depends on the choice of the functions u(t) and 4(t). To indicate
this relationship explicitly we shall denote by x(t, 4), u) the solution of (1.1)
satisfying (1.2).
Now let us consider a moving particle z(t). z(t) is an n-dimensional

continuous vector function.
Our control problem for the system (1.1) is to hit the particle z(t) with

th.e system x(t, 4), u) in minimum time. We say that an admissible steering
function u and an initial function (t) 5 S are optimal if x(t, 4), u) z(t)
for some 7’ > to -t- h, and if x(t, 4), u) z(t) for to nt- hm < T and
allu U, S.

This optimal time control depends not only on the choice of the steering
function u(t) but also on the choice of the initial function x(t) (t) in
the interval [to, to -1- hm]. One should therefore consider, together with the
problem of determining the optimal steering function, that of choosing the
optimal initial function.

For m 0, Ao(l) A (t), the system (1.1.) reduces to

(1.3) x’(t) A(t)x(t) + B(t)u(t) + f(t),

for which the time control problem has been extensively described in the
literature (see for example: [6, 8, 16, 17, 19]). The optimal steering func-
tion u(t) of the system (1.3) has the bang-bang property. In this case, the
right-hand side of (1.3) is piecewise continuous. This kind of differential
equations has been investigated by many authors (see for example: [1, 11]).
The linear differential-difference equation (1.l) has been investigated by

Bellman and Cooke [4].
Bellman [3] and his collaborators Glicksberg and Gross [5] and Kalaba

[7] have treated terminal control problems involving linear systems with
retardation. Recently Haratigvili [15] investigated a time optimal control
problem involving delay. In all these contributions the initial functions
(t) are fixed. We shall suppose here that the functions (t) range over the
set S defined above. This assumption gives rise to new features.

2. Reduction of the problem to an integral equation. Let us consider
now the time optimal control problem, described in the introduction,
for the system

(2.1) x’(t + hm) -1- A(t)x(t + h.) B(t)u(t) - f(t),

which, is equivalent to (1..1).-Under the hypotheses on the functions A(t),
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B(t), f(t), u(t) and (t), which are stated in the Introduction, it is well
known that (Cf. [4], pp. 475--477)

i) There is a unique continuous solution of (2.1) for > to which satisfies
the initial condition

(2.2) x(t, , u) 4)(t) to <= <= to + hm

ii) The kernel matrix Y(s, t) of the equation (2.1) defined for > t0,
to _-< s -<- + h, is the unique continuous solution for to =< s _-< of the
adjoint equation of (2.1)

0___ Y(s, t) Y(s -+- h. h, t)A(s + h. h)
(2.3) Os =o

(t > t0;t0 < s < t- h. and t- h. < s < t)

which satisfies the initial condition

< s =< --h,(2.4) Y(s, t) I, s,

where I is the identity matrix.
iii) The unique continuous solution of (2.1) for > to satisfying the

initial condition

(2.5) x(t) 0 to <- <-_ to -+- h,,

is given by the integral formula

(2.6) x(t + h,) x(t -+- h,, O, u) Y(s, t)v(s) ds

(t > to)

w(r

(2.7) v(t) B(t)u(t) --[-f(t).

iv) The solution of the system (2.1) satisfying the initial condition (2.2)
has the form

(2.8) x(t + h,, 4,, u) X(t + h,, oh) + Y(s, t)v(s) ds,

where X(t, ) is the solution of the corresponding homogeneous system

(2.9) x’(t-+- h) + A(t)x(t -t- h) O,

which satisfies the initial condition (2.2).
Consequently, the state x(t, 4), u) of the control system (2.1) at time
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is known by the formula (2.8). As described in section 1, for the time
optimal control problem, the particle z(t) must be reached by tim system
x(t, , u) in minimum time. We want, therefore, at some time to have

(2.10)

that is, to have

where

x(t -t- hm, , u) z(t -t- h,),

(2..12) w(t, 4,) z(t + h,) X(t + h, ) Y(s, t)j’(s) ds.

On account of the continuity of the functions A(t), B(t), (t) und z(t),
the integral equation (2.11) hs quite thc sme form us an integral equu-
tion considered by LuSalle [17] nd Neustadt [19]; they differ only in the
functions X(t, ) nd Y(s, t); in fct, here the function X(t, ) depends
lso on the initial function O(t) selected from the set S, and the function
Y(s, t) depends on both vribles s and t; but, in the case considered by
LSlle, the function X depends only on the variable and the function Y
solely on s, but not on t.

3. An integral representation for the solution of the homogeneous
equation (2.9). Consider the homogeneous differential-difference equation
(2.9) corresponding to (2.1), nd its solution X(t, ) wkich stisfies (2.2).
Evidently X(t, ) is a linear functional in over the set C. By well-known
t5eorem of functional nulysis (see for exumple [20], p. 62), we cn express
this fimctionl s follows:

l((s, t)(s) ds,(..) X(t + h )
o

where the kernel K(s, t) is defined uniquely by the functions1 X(t, ).
From (2.2) 8nd (3.1) we h.sve

0[-h

(3.2) K(s, t)O(s) ds O(t), to + h, to + h,

for 81[ (t) C. By digerentistion in (3.1) 8nd using (2.9) 8nd (3.1), we
obtsin

(3.3)
[ Ot +=0A(t-h")K(s’t+h-h) (s) ds O.

This equation holds for every (t) C. Hence
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(3.4) OK(s, t)
_

A(t- hm)K(s, + h h,) O.
Ot k=0

Therefore the kernel K(s, t) is the matrix solution of the homogeneous
differential-difference equation (2.9) satisfying the condition (3.2) for all
(t) C. With the help of this kernel function the solution X(t, 4,) of (2.9)
which satisfies the initial condition (2.2) is given by the integral formula
(3.1).

4. The functional 2(t, , u). Let us now consider the functional

(4.1) a(t, 4), u) K(s, t)4)(s) ds -t- Z(s, t)u(s) ds,

where

(.4.2) Z(s, t) Y(s, t)B(s)

and a to, b to+ h,.
From the formulas (2.1.1), (2.12), (3.1) and (4.1) we can write

2(T, , u) C(T),(4.3)

where
T

(4.4) C(T) z(T + h,) Y(s, T)f(s) ds,

nd T is the time t which the control system x(t, , u), defined by (2.1),
first hits the prticle z(t). T is the first root of the equation (2.10) which
is greter thn b to -k- h. Obviously T T(, u). By its definition it
is single-vlued. It is lso continuous in both nd u, because C(t) is
continuous function and (t, , u) is a continuous functional in. and u.

Consider now the set

(4.5) (t) {a(t, , u); , u u}.

We shll now extend some theorems due to LSalle [17].
THEOREM ]. E i8 convex.

Proof. Let E and E be two elements of the set E(t):

E (t, i, u), 4 S, u U, i 1, 2.

Let a and be two non.-negative numbers such that a -+- 1. Consider
the functions

4 c4 + 4, u au + u’.
Clearly 0 S, u U. Put E t(t, 0, u0). Since E aE -t- fie nd
0 S, u U, we haveE E(t).
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THEOREM 2. E i8 closed.
Proof. Consider a sequence of points E E(t), with E -- E, i --

E a(t, O, u) K(s, t)qi(s) ds + Z(s, t)u(s) ds,

4 S, ui U, i 1, 2, 3,.... We shall prove that E _E(t). Since
u (t) are admissible, their components u-(t) are uniformly bounded in
absolute value. Therefore, there exists a subsequence luk(t)} of lug(t)},
and measurable functions u(t) in L2(a, t) such that for j 1, r,

u O(t)
in L2(a, t), and u(t) (ul(t),..., Ur(t)) may be chosen to be
missible.

Let us consider now the sequence/ik(t)}. According to the definition of
the set S, it is closed and compact. Therefore, we can select a subsequence

{’(t)},
which tends uniformly to a limite function (t) S. The subsequence
u’ (t)} tends to the limit fimction u(t), obtained before. Without loss of
generality we may assume that

Cjo(t) ----, (t) (j 1, 2, n)

uniformly, and

u (t) --v-z- u(t) (j 1, 2, r)

weakly. Thcrcforc, by the definition of weak convergence and also uniform
convergence, E 2(t, 4,, u) E(t)"

E -- E K(s, t)q(s) ds -- Z(s, t)u(s) ds.

Consequently, the limite of a convergent sequence in E(t) belongs to E(t).
This proves the theorem.

Consider now the set

(4.6) E {2(t, , u); 4 S, u U},
where U is the set of all bang-bang functions.
THEOREM 3. E(t) E(t).
Proof. Define, for every fixed > a, the subsets

(4.7) M(t) Z(s, t)u(s) ds; u -(

and
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(4.8) M(t) Z(s, t)u(s) ds; u U

where Z(s, t) is defined by (4.2). The n X r matrix function Z(s, t) is con-

tinuous for a _-< s <= t, because the kernel matrix Y(s, t) is continuous for
a <= s -<_ by section 2 and B(s) is continuous by hypothesis.

Let zJ(s, t) be the jth (j 1, r) column vector in Z(s, t). We
define

zJ(s, t)u(s) ds; u U},
and

M.(t) fa z(s, t)u(s) ds; U

Thus we have

f Z(,’, t)u(s) ds z(s, t)u(s) ds,
j=l

Z(s, t)u(s) ds z(s, t)u(s) ds,
’=1

and also

=1 =1

For all fixed (> a) the n-dimensional vectors z(s, t), j 1, 2, r,
are continuous for a =< s t, and, therefore, satisfy the conditions of
LaSalle’s first lemma [17]. Hence M(t) M(t) for each j 1,... r,
and therefore M(t) M(t). The proof of Theorem 3 is an immediate
consequence of this extended LaSalle’s lemma.
By the above theorem, anything that can be accomplished in time by

by u(t) U can also be accomplished in time by u(t) U. Conse-
quently, we can state the following theorems due to LaSalle [17] for our
control system (2.1)"
Tnnonn 4. If of all u(t) U there is an optimal one relative to U, then

it is optimal relative to U.
THnORnM 5. If there is an optimal control function, then there is always a

bang-bang control that is optimal.

5. Existence of optimal functions. We shall prove now the following
existence theorem, which is an extension of that due to LaSalle [17].
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THEOREM 6. If there is a pair of functions S, u U, such that

x(t, , u) z(t),

then there exists a pair of functions o S, u U, which are optimal.
Proof. By hypothesis the set

(5..) IT, x(T, , u) z(T); , u U}

is not empty. Let 7’o be the greatest lower bound of all 7’ (> b) which
belong to the set ’. By sections 2 and 4, we have, for T ,

C(T) 2(T, , u) E(T).

Let 7.’ be such that ." --+ T for i -- . Consider the sequences

(5.2) , f’E,,: f( 7,, 4), u’) K(s, T,)’:(s) ds + Z(s, T)u(s) ds

and
T

fa + fa(5.3)

Obviously E E(T), E T0E( ). Clearly

E Ei {K(s, Ti) K(s, T) li(s) ds

(5.4)

+ {Z(s, T,) Z(s, 7’) }u’(s) ds + Z(s, T,)u’(s) ds.

Let us denote by h the norm of h. Since Z(s, t) is continuous
for a _-< s <__ t, th.ere exists a positive mamber m. such that

(5.,) z(, t) <_-

for a <= s <_- t, where is sufficien.tly large. Therefore, for

we have

f Z(s, T)u(s) ds

From the continuity of the matrices K(s, t) and Z(s, t), we may write, for

.T{- T <
3m2
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that

(5.7) K(s, T) K(s, T) <
3h= m2

(h.= b--a),

where

(5.9) m2 Sup I1,

which is a finite number by the definition of the set S.
From (5.3)-(5.9) we obtain

(s.o) (T,, , u) e(, , ) <
for

(,5.11) Ti T < Min -, 3h, m
Since the set E(T) is compact and closed, we can select subsequences
{k(t)} and {uk(t)} of the sequences {(t)} and {u(t)} so that they con-
verge respectively to the functions (t) S and u(t) U. Therefore
C(T) (T, 0, u0) E(T), that is x(T, o, uo) C(T), where T is
the optimal control time. This proves the existence of optimal functions
O(t) and u(t).

6. Properties of (t, , u). We shall establish, in this section, some
further properties of the functional (t, 4, u).
THEOREM 7. If (t) S and u(t) U are in some suiciently small

neighborhood N() and N((t) of (t) S and (t(t) U, then corresponding
to each e > 0 there is a > 0 such that

for each a , (t and all [ < < and all N u N (t

Proof. Suppose < and consider

[.

ds

(6.2) -t- (K(s, )(s) K(s, t)(s)} ds

+ {z(s, )a(s) z(s, t)u(s)} ds.
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From the continuity of the matrix function Z(s, t), we have

(.3) Jt Z(s,)a(s) ds < m(- t),

where m is defined by (5.5). Using the mean value theorem, we obtain

K(s, t) K(s, ) + (t- )K(s, t’), < t’ < ,
mid

Z(s, t) Z(s, ) + (t- )Z,(s, t"), < t" < ,
where and t" may be different for different elements of the respective
mutrices Kt(s, t) OK(s, t)/Ot nd Zt(s, t) OZ(s, t)/Ot. Hence

K(s, {)(s) K(s, t)(s) K(s, /)[(s) (s)] -t- ({- t)Kt(s, t’)ch(s),
and

z(,, l),c,(.) z(., t)u() z(, )[,a(s) u()] + (- t)z(s,

Therefore

(6.) f

{z(, t)a() z(., t)u(s) d.

< (t a)[-, a u + ,m(

N(g)" ]l*Z-ul] < 3m1(- a)’
u < U

where

ma Sup II-1((8,, ) [[, m4 Sup Kt(s, ) ,,, m Sup Zt(s, [)

Consequently

Let us consider the neighborhoods N(&) nd N() defined s follows

N(). II-ll<ahm
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In this case we have

for [- 8 < < , and for all 4 N(), u N(/), where

(6.7)
3(h, mm + nm)

Tn],zonnM 8. If is an interior point of E(t) then there exisls an > 0
such that N E(r) for all r in e, t].

Proof. Let f be in the interior of E(t) and let N(]) be neighborhood
of t2 of radius e > 0 contained in the interior of E(t). Let e,. 1/2e and
let N(t2) be the neighborhood of f of radius ez. Let 8 (ez) > 0 be
chosen to stisfy theorem 7, i.e. (6.7) with e ez. Consider f* N(f).
Suppose for some h stisfying 6 < h < that f* is not in the interior
of E(h). Then since E(ta) is convex, there exists a support plane P such
that there are no points of E(h) on one side of P. Because the neighbor-
hood N(f*) N(f) E(t) we see that there is u point p E(t) such
that P E(h)[I >= ’. But this contradicts theorem 7. Therefore
N(tl) E(r) for all r C (t 8, t]. Now set e Min (e2,8). Then > 0
and N(]) N2(tl) and (t e, t] (t 8, t]. Thus N,(tl) c E(r) for
allr (t- e,t].
THEOIEM 9. Let C(t) be given by (4.4). Then C( T) is a boundary point

of E(T), where T is the optimal titHe.

Proof. Suppose, on the contrary, that C( 7’) tl( T, o, uo) is an interior
point of E(T). Then from the theorem 8 there exists an > 0 such that
N(C(T)) E(t)for all T- < < T. The continuity of C(t)at 7’
implies that there exists a 8 > 0 such that C(1) . N(C(T)) for all
T 8 < < T. Let 2/ Min (, e). Then C(T -) N(C(T))
c E(T , < and is,,). But this is a contradiction since T 7,0 T
by hypothesis, the minimum value of such that C(t) E(t).
THEOREM 10. There exists a vector qO (qio, qnO) of the n-dimensional

Euclidean space, such that

(6.10) qO. ft T, b, u) -<_ qO. /,o, o, uo)
for all T, , u).

Proo]. Since E( T) is convex set and since ft( T, o, u0) is, by Theorcn
10, a boundary point of the set E(T), there is a support plane through
ft 2(T, q)o, nO). Let qO be a non-zero vector orthogonal to this support
plane and directed to the side which contains no points of the set E(T).
Therefore, for each ft( T, , u) E( T) and for all S, u C U, we have

q0, a T, , u) a T, , u0) __< 0.

This inequality is equivalent to (6.10).

The author is particularly indebted to the referee for theorems 8 and 9.
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7. Optimal control functions. As in the case which LaSalle considered
we can prove the following theorem for the general form of the optimal
control function"
THEOREM 11. All optimal control functions u (t) are of the form

(7.1) u(t) sgn [qY(t, T)B(t)], to =< _._<_ 7 ’(,,
0 /,0where qO is some non-zero n-dimensional row vector depending on (t) and

is the optimal time.
The proof of this theorem is very similar to I,aSalle’s proof for th.c

system (1.3).
As LaSalle proved, if the system (2.1) is normal, that is, if no components

of [qY(t, T)B(t)] vanishes on any interval, no matter what the vector
q 0, the optimal control function is bang-bang, mfique and given by (7.].).
The signum in the formula (7.1) is taken by components" i.e., if b is an

r-vector, thena sgnb, mensthat a. lwhenb. > 0andai -1
when b < 0 and a. is indeterminate for bi 0.

8. Optimal initial functions. Let us consider the equation (2.10) with
the optimal functions"

(8.1) x(1’, 0, u0) z(T),
where we know the existence of T

_
,4) and u and also the general form of

the optimal steering function u(t) by the formula (7.1). We write this
equation in the following form"

(8.2) f
where

K(s, T) (s) ds G(T),

T T

+(s.a)

We wish to establish the optimal initial functions 0(t). As all the quantities
in G(T) are known, except the vector q, (8.2) is a Fredholm integral.
equation of the first kind. Writing instead of T, (t) instead of (t) and
putting

(8.4) Kq) K(s, t)dp(s) ds,

we ol)tain

Let K*(s, t) be the transposed matrix of K(s, t). 1)ut

(8.6) K/ K(s, t)(t) dt,
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(8.7) &.

It is well known that

(K, /) (b, K*6).
Let {X/} be the set of eigenvalues of the following homogeneous Fredholm

integral equations of the second kind:

(8.9)

Let {4/(t)} and {(t)} be the complete sets of the principal eigenfunetions
of the kernels K(s, t) and K*(s, t), which are biorthonormalized:

(8.10) (,&, ,:) { lO’j /,

1,j 1,

(8.11.) K, XeCe, K* Xe.
Iet {o,z(t)} and {0i(t)} be the non-trivial solutions of the integral

equations

(8.12) K 0, K* 0.

Assume that the solvability condition

(8.13) (0, G) 0

is satisfied for each 0(t). Consider now the expansion of the function G(t)
with respect to the biorthonormal system {0, }:

where

(8.15) ck (,, G).

Let us n.ow determine the constants ak, such that the series

(t) +
k-=l

Where 0(t) is a solution of the integral equation K 0, should be a solu-
tion of the in.tegral e(/ation (8.5). For th.is purpose, multipl.y both. sides
of (8.5) t)y ,:(t) and itegrat(; with. respect to from a to b; lmm(;, makig
use of the preceding formulas, we obtain
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cA It; 1, 2,(8.17) a X’
Therefore, the optimal initial function is given by the formula

(8.1_8) 4)(t) = 4),(t) + 4)0(t).

We note that, the above deductions base upon the continuity of the kernel
function K(s, t).
We summarize this result as follows"
TnnotnM 12. Let {h} be the set of eigenvalues oj" the integral equations (8.9)

and {4) (t) }, (t) be the complete sets of eigenfunctions of the lcernels K (s, t)
and its transpose K*(s, t). Let {0(t)} and {0(t)} be the sets of non-trivial
solutions of the integral equations (8.12). If the solvability condition (8.13) is

satisfied for each P0(t), then the optimal initial condition (t) is given by the
formula (8.18), where the coefficients c are defined by (8.15) and 0(t) is a
linear combination of the functions 4)0i(t).

9. A necessary condition for optimality. We have established in section
6, Theorem 10, the existence of a vector q0 such that q.C(T) maximizes
the function q.2 for E(7’).

Consider now the vector function uq(t) defimd by

u(t) sgn [qY(t, T)B(t)], to < <- T,
where q is an n-dimensional ui.t vector" q 1. Obviously, more
one q my determine the same u,(t). Let q(t) be the iitial condition cor-
responding to the control function Uq(t), obtaimd by a similar method to
that of section 8, using uq(t) and T instead of u(t) and T respectively. It
is clear that UqO (t) u(t) and 4)q0 (t) 4)(t).
By the definitions of u,(t) and 4)(t) and the unique maxirnum condition,

we huvc

for all ](T, , u) - E(T), (T, , u) ([/’, , u).
Let us consider the vectors q for which

(9.1) q[(b, , u) C(b)] <= 0,

and defi.e the fumtiou

(9.) y(t, (.) ..L(t,
where

(:.’) .,(t, ) (t, .,., u) c(),
ad ue beig the extremal i’uzmtions defined bove.
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Let H0 be thc convex set of vectors q which have the property q.ft
<= q.C(T) for f E(T). Clearly, for q H0, V(7.’. q) 0.
Suppose now that V(t, q) is strictly increasing at T for every

q Ito. If q I[o, V(T, q) :> 0 regarding to the definition of the set H0.
On the other hun.d, we have V(b, q) < 0 by (9.1). Therefore, there exists
some unique T(q) such that

(:.4) v(’(q), q) o,
.for in a neighl)orh.ood of T and q in a neigh.borhood of H0. If q H0,
T(q) T, and if q @ H0, T(q) < T. Therefore, we obtain the following
extension of a local maximum principle due to Neustadt [19] whieh gives
a necessary condition for the optimality for our control problem"
TItEOREM 13. Let T be the maximum time at which any x(t, , u) given

by a normal system (2.1) and satisfying the initial condition (2.2), can reach
the particle z(t); ’ for every q Ho the function V(t, q) given by (9.2) is
strictly increasing with at T, then jbr q in a neighborhood q Ho and
in a neighborhood of T, the vectors q Ho maximize the time for which

q.a(t, 4o, uo) q.C(t).
Th.is th.eorem, which is very close to Pontryagin’s maximum principle

([8], [15]), reduces the optimal time problem to finding the maximum of
the function T(q). To find this maximum, we shall show first that the func-
tion T(q) possesses continuous partial derivatives. For this purpose,
since T(q) is defined implicitly by the equation V(t, q) 0, we shall
show that OV/Ot and OV/Oq i 1, 2, n, exist and are continuous,
and if 0V/0t 0:

(9.5) osv oV /.Ov (i , n).
Oq Oqi Ot

{q.Z(., t)}. {sgn q.z(a, t)}

Denote again the components of Z(s, t) Y(s, t)B(s) by z(s, t) and the
components of q by q (i 1, n;j 1, r; k 1, n). Itence

(..7) z(t, q) z(t, q ,..., q.) }2 q, z,(,, t)

Oz . 1’
Oq,,:

<: ,,, Z(s, t) sgn lq.Z(s, t)] ds,

wh.ere e s a row--vector which is defined by ei (5,i.
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being the Kroneeker’s symbol"

o,i j,J 1, i j.

On the other hand we have

(9.9) Oq--- q.K(,, t)ch(s) d, e,*.

Therefore

K(s, t)4)(s) ds.

OV(9.10)
Oq,

e,*.L(t, q).

Similarly, we have

(9.11) O--t q. K(s, t)4)(s) ds

Let us now calculate Oz/Ot; we put

(9.12) crj(s, t, q) qk zkj(s, t), S(t, q) as(s, t, q) dt
k--=l.

Cleverly

A,q N(t -t-- At, q) Nj(t, q)

o-.;(,% + ,t, q) , o-.(,% t, q) ,

At l<i(t + oat, + At, q)]

where 0 < 0 < 1. Since our system is normal the set {s" <i(s, t, q) 0, s < t}
has measure zero for every q. Hence for any > 0, there is a positive 6 such
that the set A0 {s’a(s, t, q) < 6, s < t} has measure less th.a,n (:. I,et



306 M.N. O(-UZT6REL1

A+ {s:(s, t, q) ti, s <: t}, and A_ {s:(r.(s, t, q) =< -i, s < t}.
Since (r;(s, t, q) is continuous and continuously differentiable,

(9.15) M Max { a;(s, t, q) Oz(s, t, q) } <

Choose At such thgt At < 6/M. Then

A,% At z;(t + OAt, + At, q)

(9.16) + At j az(s, t, q)
sgn [z(s, t, q)] ds

+UA_ Ot

+ ] ( (’ t, q) + o(’ot’ q,)
t -, (, t,

Since the lnst integral is less, in bsolute wlue, than At[Me, we hve

ds.

<2M,

therefore

fa Oz,(S, t, q)
sgn [o-(S, t, q)] ds(9.17)

Ot
z(t, t, q) -t-

Ot

nd, since Z(s, t) Y(s, t) B (s) n.d Y(t, t) I (identity mtrix), we
obtain

Oz( t, q) o&

Consequentl.y

0V
Ot

(9.19)

{q.B(t) {sgn [q.B(t)]} q.C’(t)

fa OZ(,,t)-F q oI_((s,g.g t) 4,o(s) d. -q.- q
at

sgn. [q.Z(,, t)l

.P(t, q).

If P(T(q), q) Q(q) O, from (9.10) and (9.19), we obtain

OT e*.L(t, q)(0.20) ,q,: Q(q)
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and

(9.21.) VT C( T(q) .q)
Q(q)

Clearly the vector function L(t, q) is continuous in both and q. We
suppose that Q(q) > O.

Let r be a parameter and consider the differential equation

(9.22) dq
dr

Q(q).VT -L(T(q),q).

Since L(T(q), q) is continuous, this equation has a solution satisfying a
given initial condition. If Q(q) 0, dT(q)/dr exists and

dT(q) VT dq((,t.23)
dr .:,: Q(q).(VT.VT) > 0.

If q # H0, VT 0 and therefore dT(q)/dr > O.
If Q(q) O, dT(q)/dr does not exist. But, by the formula (9.10), VV,

for fixed t, is defined, and

ov( t, _q( t) (dq’ 
or \/ < 0 for q i Iio.

Hence, V(t, q(r)) is monotonically decreasing with r, or T(q(r)) is in-
creasing witla r, so that for all q q H0,7’(q(r) is increasing with. r.

Let us denote by ) the domain of the function T(q). This function is
defined for all q for which the inequality (9.1) is satisfied. Consider the
solution q.(r) of the differential equation (9.22) which satisfies the initial
condition q(()) q0, where q0 . The function q(r) i) for all values
o-f r > r). In fact, if q(r) leaves ,3, then for’ some r >

q(r’)[f(b, , u) C(b)] O.

tlenee

V( T(q(r’) ), q(r’) q(r’).[a(T(q(r’)), qh, u) C( T(q(r’) )] 0.

Therefore, by (9.4), T(q(r’)) b. But this is impossible, because
T(q(r’)) > T(q(ro)) >=: b if r’ > r0.

It can be easily seen that the norn q of the solution of (9.22) is
constant.

Let q(r) be the solution of (9.22) such. that q(ro) qo . If q(r)
approaches a limit as r -- , then this limit is in H0. Thus T(q) b on
the boundary of ) and T(q) attains its maximum.

10. Construction of the kernel K(s, t). The kernel matrix
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K(s, t) is defined, in Section 3, as the solution of differential-difference
equation

OK(s,t + h,) + A#,(t)K(s,t-[- h) O,lO.l
tot =0

which, satisfies for all 4(t) C, the condition

(10.2) K(s, t)ck(s) ds (t), a __< =< b,

where a bo, b l0-+- h.
lxt /(s t) i)e the Dirac’s delta-function"

(1.0.3) (s--t) {(st’
It is well known (Cf. [21]) that

(10.4) Ja (s t)(s) ds 4,(t), a <- -< b.

Obviously the solution of the differential-difference equation (10.1) which
satisfies the initial condition

(10.5) K(s, t) 5(s- t)I, a s, <__ b,

where I is the identity matrix, verifies the required condition (10.2). We
may establish this solution. For this purpose let us consider the solution
K(s, t) of (10.1) satisfying the initial condition

(10.6) K(s, t) (s- t)l, a <= s, b,

wh.ere &(s t) is defined by

(:,.0.7) (s-- t)
[(s t) + 1’

wh.ich gives a continuous approximation of the delta-function"

(10.8) lim6(s t) 6(s- t).
e0

K(s, t) is uni(luely determined for b (Cf. for example [12]), and, is
c()ntinuously dependent on e, and it possesses the following properties"

(10.9) lira K(s, t) K(s, t),

for a s b,t a, and

(10.10) lim K,(s, t) lim(s- t)I (s- t)I
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for a <= s <= b, a <= <- b. Therefore, to construct the kernel matrix function
K(s, t) it suifices to establish the approximating kernel K(s, t) and pass
to the limite e 0.

11. Acknowledgment. The mlthor wishes to express his appreciation to
Dr. P. Seibert and Prof. W. Hahn for their helpful commeats and to the
referee for his very valuable remarks.
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STABILITY CRITERIA FOR NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS*

O. L. MANGASARIAN
Abstract. The main results of this work are three sufficient conditions for the (1)
stability, (2) uniform asymptotic stability in the large and (3) instability, of the
equilibrium point x 0 of the system of differential equations" c f(t, x), f(t, O) O.
Stated roughly these conditions are" The point x 0 is (1) stable if x’f(t, x) is a
concave function of x, (2) uniformly asymptoticMly stable in the 1.rge if x’f(t, x)
is a strictly concave function of x, and (3) unstable if x’f(t, x) is a strictly convex
function of x. These results are obtained by using the stability and instability criteria
of Liapunov and properties of concave and convex functions.

1. Introduction. We shall be concerned with the system of nonlinear
ordinary differential equations

(1.1) 2 f(t, x)

where x and f are n-dimensional vectors and 0 _-< < . We shall assume
that f (t, x) is piecewise continuous in the (x, t) space, the discontinuities
lying on sufficiently smooth manifolds, and that to any given (x0, to) there
corresponds at least one function of t, x y (t, x0, to), defined, continuous
and with piecewise continuous derivative with respect to for all >_ to,
which satisfies the system (1.1) except at the points of discontinuity. Ac-
cording to Massera [9], under these conditions, the stability criteria of
Liapunov and various modifications thereof hold.
We shall assume that f (t, 0) 0 for all t, so that x 0 is an equilibrium

point of the system (1.1). We will be concerned with the stability or insta-
bility of this equilibrium point.
Our main results are given in Theorems 1, 2 and 3 in Section 3. These

theorems give sufficient conditions for the stability, uniform asymptotic
stability in the large, and instability of the equilibrium point x 0. These
results are based essentially on the concavity, strict concavity, and strict
convexity, respectively, of the scalar function x’f (t, x) with respect to x.
We use the commonly accepted definition [1, p. 181, [3] that (x) is

convex if, for 0 -_< X =<_ 1.

(1.2) (1 X) (x -t- Xo (x) o[ (1 X)x’ q-. Xx]

for all vectors x and x in the convex region of definition of (x). The func-
tion (x) is concave if the inequality sign in (1.2) is reversed. For strictly
eonvex (concave) functions the equality sign in (1.2) holds only for X 0,

* Received by the editors September 9, 1962 and in revised form Mreh 24, 1963.

’f Shell Devel()l)ment Compa,ny, Emeryville, Ca,lifornia,.
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X 1 or x x. Note that convexity and concavity imply continuity in
the interior of the convex region of definition but not. necessarily differenti-
ability. However if (x) is twice continuously differentiable then sufficient
conditions for convexity, concavity, strict convexity and strict concavity
of f(x) are respectively that the symmetric matrices of second partial de-
rivatives 02/OxOx be positive semidefinite, negative semidefinite, posi-
tive definite and negative definite for all. values of x in the region of defi-
nition of [1, p. 18], [3].
Among previously obtained criteria for asymptotic stability are those of

Krasovskii [7] and Hartman [4, Lemma 1’]. Both of these results are re-
stricted to autonomous systems (that is f f (x)) and require that f have
continuous first partial derivatives. Our results for stability (Theorem 1)
and uniform asymptotic stability in the large (Theorem 2) are not only
valid for nonautonomous systems but do not require differentiability of f.

Prior to proving the stability theorems of Section 3, we establish certain
properties of convex and concave functions. We do this in Section 2 where
we also state certain stability theorems of Liapunov and Massera that are
needed subsequently.

Vector notation is used throughout. In general, Latin capitals denote
matrices, small Latin letters denote column vectors, and small Greek
letters denote scalars. Exceptionally, V (t, x) will denote a scalar function
of the scalar and vector x. A prime will denote the transpose. The
Euclidean norm (x’x)l/2 of vector x will be denoted by x .
The scalar function V (t, x) is positive d@nite if for 0 N < , V (t, x)

> 0 for x 0, V(t, 0) 0, and lira inft V(t, z) > 0 for x 0. The
function V(t, x) is negative definite1if for0 N < , V(t, x) < 0 for
:c 0, V(t, 0) 0 and lim supt_ V(t, x) < 0 for x 0.
The fu-nction V (t, x) is said to have an infinitdy small upper bound if,

given > 0, there exists a > 0 such that V] < for all
x < . When V (t, x) is of class (f in a,d x, we lv( al()ttg solutios

of (1..)

wh0FO

oV ?V?(t,z) ’vv + -0T f’vv + 0i

ov ov.. -\1’vv-- -] ox "’These definitions of positive and negative definite functions differ somewhat
from the conventional ones [2], [8], [9] which are implied if we assume in addition
that V(t, x) is continuous and has continuous first partial derivaUvcs.

lim info and lim sup., denote respectively l,te limit inferi()r md limit speri()r
()f V(t, x) as en(ls to infinity.
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2. Preliminary results. We start by establishing some lemmas which are
used in proving the main results of Section 3. In what follows is a scalar
and f and x are n-by-1 vectors.
LI_MMA 1. Let f (t, x) be continuous in x at x 0 for 0 <= < and let

f (t, O) 0 for 0 <= < o. If x’f (t, x) is a concave function of x for 0 <=
< ,thenx’f(t,x) <= OforO <- < .
Proof. Let (t x) =- x’f (t, x) and x 0. By the assumed concavity of

(t,x) we have for 0 -< < and0 < h =< 1

(1 h),(t, x) -- h,(t, x) =< [t, (1 k)x + Xx]

or

(t,x) < --(1 h)(t,x) --,[t,x + h(x- x)]

(t,) o,f xo)Now sincex 0andp (t, 0, wehavefor0 < h-_< 1
nd0_< <

,(t, x) <= m(t, hx) x’f(t,

Hence for0_<

x’f (t, x) (t, x) <= lim x’f (t, hx) x’lim f (t, kx).
k-0 h-0

But since f (t, x) is continuous in x at x 0 for 0 -_< it follows that
limx_0f(t, hx) 0 and thus x’f(t, x) <= 0 for 0 _-< < .
Lemma 1 is used to prove Theorem 1. The following lemma is needed

in the proof of Theorem 2.
LEMMA 2. Let f (t, x) be continuous in x at x 0 for 0 <= < , let

f (t, O) 0 for 0 < and let (x) lim supt_. xf(t, x). If xf (t, x)
is a strictly concave function of x flr 0 <= < and if either (I) (x) < 0
for x O, or (II) (x) is strictly concave in x, then x’ f (t, x) is negative
definite.

Proof. Let (t, x) x’f (t, x). By the strict concavity of (t, x) we have
for0 =< < ,0 h< landx 0

( ,)(t, 0) + ,(t, x) < (t, Xx),

and since (t, O) O,

(2.1) (t,x) <’(t’Xx) for 0-< < ,0 <k< 1, x0.
h

I tm indebted to the referee for the removal of a redundant hypothesis from this
lll Ill t],.
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Now by Lemma 1,(t,x) x’f(t,x) <- OforO -<_ < .However, if
(t, x) 0 for some in 0 -< < and some x # 0 then it follows
from (2.1.) that , (t, Xx) > 0 for 0 < X < 1 and x # 0, which contradicts
the assertion of Lemma 1 that , (t, x) -<_ 0 for 0 <_- < m. Hence (t, x)
=- x’f(t,x) < 0for0 -< < andx # 0.
Since it is obvious that , (t, 0) 0, it only remains to sh.ow that (x) < 0

for x # 0 in order to prove the Lemma. We have two eases.
Case I’ (x) < 0 for x # 0, by assumption.
Case II" If (x) is strictly concave in x, we have for 0 < X < and
x0

and since (0) 0,

(.- x)(0) + x(x) < (Xx),

(2.2) (x) <’’(.,Xx for 0 < X < 1, x -0.
X

Now, forx #0

(x) lim supt-, x’f (t, x) <-_ 0

where the last inequality follows from the fact
xf(t, x) < 0for0 _-< < o andx 0. Hence

(proven above) that

(2.3) (x) _-< 0 forx 0.

Now if the equality sign in (2.3) is ever satisfied for some x # 0, then
it follows from (2.2) that (Xx) > 0 for0 < X < land x # 0, which
contradicts (2.3). Hence (x) < 0 for x # 0 and thus x’f (t, x) is negative
definite.
A lemma similar to the preceding one will now be given which

used in proving Theorem 3. Lemma 3 follows from Lemmt 2 by essentially
noting that the negative of a strictly concave function is a strictly convex
function.
LEMMA 3. Let f (t, x) be continuous in x at x 0 for 0 <-_ < let f (t, 0
OforO <= < , and let(x) =- liminft_.x’f(t, x). Ifx’j’(t, x) isa

.strictly convex function of x for 0 <= < and if either (I) (x) > 0 for
x O, or (II) b (x) is strictly convex in x, then x’f (t, x) is positive dfinile.
We will also need the following theorems of Liapunov and Massera.
LIAPUNOV’S STABILITY THEOREM [2, p. 109], [8, p. 37], [9, p. 707]. /f a

positive definite scalar function V (t, x) of class C exists for which <= 0,
then the point x 0 is a stable equilibrium point of the system (1.1).

.[V[ASSFRA’S THEOREM [10, p. 20011. If a scalar function V (t, x) of class C
exists which is positive definite, tends to infinity with x has an infinitely
small upper bound, and is such that fz (t, x) is negative definite, then x 0
is a un’@rrmly, asymptotically stable point in the large oj" the system, (1.1).



STABILITY CRITER1A 315

LIAPUNOV’S ]INSTABILITY THEOREM [2, p. 110], [8, p. 38]. If a function
V (t, x) of class C exists which is positive definite, has an infinitely small
upper bound and is such that is positive definite, then x 0 is unstable.

3. Stability theorems.
THEOREM 1. (Stability) .Let f (t, x) be continuous in x at x 0 for 0 -<_:

and letf(t,O) OforO < .Ifxj"(t,x) isaconcavefunction
of x for 0 then the point x 0 is a stable equilibrium point of
the system (1.1).

Proof. Consider the Liapunov function V (x, t) x’x, which is obviously
positive definite. It follows then that for 0 N < , 2x’2 2x’f (t, x)
N 0, where the last inequality holds because of Lemma 1.. Hence by
Liapunov’s Stability Theorem, the point x 0 is a stable equilibrium
point.
The following corollary to Theorem 1 follows from the fact [1, p. 18], [3.1

that for a twice continuously differentiable concave function, th.e matrix
of second partial derivatives is negative semi-definite.
COROLLARY 2. ( f (t, O) 0 for 0 < and the function j" (t, x)

is a twice continuously differeutiable of x for 0 < and x <
then the point x 0 is a stable equilibrium point of (1.1) provided that the
matrix H,i [Oxf (t, x)/OxOxi] is negative semidefinile for 0 < and

THEOREM 2. (Uniform Asymptotic Stability in the Large) Let f (t, x) be
continuous in x at x O for O < , let f (t, O) O for O <
and let (x) lira supt x’f (t, x). If x’f (t, x) is a strictly concave function
of x for O < and if either (I) (x) < O for x O, or (II) (x) is
strictly concave in x, then x 0 is a uniformly, asymptotically stable point
in the large of the system (1.1).

Proof. Consider the Liapunov function V (t, x) x’x, which is obviously
positive definite, tends to infinity with x , and has an infinitely smll
upper bound. Now 2x’2 2xf (t, x), which is negative definite by
Lemma 2. Hence it follows from Massera’s Theorem that x 0 is a uni-
formly asymptotically stable point in. the large.

For autonomous systems, 2 f(x), f(0) 0, it is sucient for
Theorem 2 to hold to require only that f (x) be continuous at x 0 and

’.(x (x) be strictly concave in x.
An example where neither condition (I) nor (II) of Theorem 2 are satis-

fied, is, 2 -e-tx, for which (x) 0. It is easy to verify that for this
example x 0 is not at asymptotically stable point. Both conditons (I)
and (II) are satisfied by the system 2 (1 + e-t)x, for which x 0
is a asymptotically sttble point ir the large.
Note thtt Theorem 2 differs from ""Krasovsku s suiiicie.t condition,s for

I am indebted to J. P. LaSallc for this example.
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symptotic stability [7], [6, Theorem 4] in number of wys" ()
Krsovskii’s result is for utonomous systems, Theorem 2 holds for utono-
mous nd non-utonomous systems. (b) In Krsovskii’s theorem, f’f is
tken s Lipunov function, whereas in Theorem 2, x x is a Liapunov
function. This is the reson why Kmsovskii cnnot handle nonutonomous
systems for d/dt(f’f) f’ (J J’)f 2f’Of/Ot (where J is the Jcobin
mtrix of f with respect to x). Hence unless 0f/0t 0, s is the cse for
utonomous systems, nothing in general cn be sid bout the system. (c)
Krsovskii requires that f be differentible, Theorem 2 requires f be con-
tinuous t x 0. Similarly the suflcient conditions obtained by Hrtmn
[4] n.d Hartmn nd Olech [5] require the differentibility of f.

If the function f is twice continuously differentible in x, then the follow-
ing corollary to Theorem 2 holds.
COROLLARY 2. Let f (t, O) 0 for 0 <= < , let (x) lim supt-_,.

x’f (t, x), and let f (t, x) be a twice continuously differentiable function of x for
0 <= < . If the matrix H 0 (xf(t, x))/OxOx is negative definite for
0 <= < andllxll < ,andifeither (I) (x) < Oforx 0, or (II)
(x) is twice continuously differentiable, and the matrix K O’ (x)/

OxOx is negative definite for x < , then the point x 0 is a uniformly,
asymptotically stable point in the large of the system (1.1).
THFOEM 3. (Instability) Let f (t, x) be continuous in x at x 0 for 0

<-_ < , let f (t, O) 0 for 0 <= < and let (x) lira inft_ x’f (t, x).
If x’f (t, x) is a strictly convex function of x for 0 <- < and if either (I)
(x) > 0 for x 0, or (II) (x) is strictly convex in x, then x 0 is an
unstable equilibrium point of the system (1.1).

Proof. Consider the function V (t, x) x’x, which is obviously positive
definite and has an infinitesimally small upper bound. Now

2x’f (t, x), which is positive definite by Lemma, 3. Hence it follows from
Liapunov’s Instability Theorem that x 0 is an unstable point of (1.1).
For autonomous systems, 2 f (x), f (0) 0, it is sufficient for x 0

to be unstable that f(x) be contitmous at x 0 and xf (x) be strictly
convex in x.

If the function f is twice continuously differentiable in x, then the
following corollary to Theorem 3 holds.
COROLLARY 3. Let f (t, O) 0 for 0 <- < , let (x) lira inft

xf (t, x ), and let f (t, x) be a twice continuously differentiable function of x for
0 (xf(t, x) )/Ox:..Ox is positive definite for0 <= < If the matrixH =--

0 <= and IIxll < ,andifeither (I)(x) > Oforx O, or (II)
(x) is twice continuously differentiable, and the matrix K 0 (x)/

OxOx is positive dqfinite for x then x 0 is an unstable equilibrium
point tf (1.1).
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4. Examples and remarks.
Example 1"

2 -- b(t)2 -- c(t)2[ + x O, b(t) >= 0; c(t) >= O.

This equation may be interpreted as the movement of a unit point mass
under a unit spring force xl and under a nonlinear damping force b (t)21
-t- c (t)2{. The equation may be rewritten as the system

1 X2, -x b (t)x, c (t)x.
The scalar function x’f(t, x) -b(t)x2 c(t)x2 is concave (but not
strictly concave). Hence by Theorem 1 or Corollary 1 the point x 0,
x. 0 is stable. Krasovskii’s theorem does not pply for this non-autono-
mous system.
Example 2:

--x xx for x 1
-x xx for x > 1

(-x+ x forx 1
-x + x x for x > 1

For the above system j’ (0) 0 and xf (x) -x x is strictly concave.
Hence by Theorem 2 the point Xx 0, x 0 is uniformly asymptotically
stable in the large. Neither Krasovskii’s nor Hartman’s result can be
applied here, because f is not differentiable.
Example 3"

(1 nt- 3’ sill t) (--Xl -- Xl.X2)31 (1 -t- ’ sin t)(--x XlX.

(1 -t- "r sin t) (--x Xl X2)
22 (1 - V sin t) (--x,. -1- xlx2)

for Xl + x2 . 1
forxl + x > 1

for xl -t- x: _-< 1
forx + x >

where 0 =<. v =< 0.9. Note that for this example f (t, 0) 0, and that f (t, x)
has discontinuities on x -- x. 1. However the scalar function x’f (t, x)

(1-1- -/ sin (x+ x) is strictly concave in. xfor0 _-< < ,and
b(x) lim supt_ (1 + V sin t) (Xx + X22) - --0.1 (Xl -t- X) < 0
for x 0. Hence by Theorem 2, the point xj. 0, x 0, is a uniformly,
asymptotically stable point in the large.
As a final remark it, should be mentioned that the present results may

be used in deriving suffeient conditions for the controllability or non-
controllability of systems of the type : f(t, x, u(t, x)) where u is a
m-dimensional control vector to be selected from compact convex set
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of the m-dimensional real number space. This is being investigated now
and will be reported on later.
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bility [11] which stimulated this work. I am also indebted to M. H. Proffer
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ON COMPUTING OPTIMAL CONTROL WITH INEQUALITY
CONSTRAINTS*

YU-CHI H() AND PIERO B. BRENTANI{

1. Introduction. The growth of interest in the problem of optimal control
has reached exponential rate it the past few years. The volume of papers
and reports even in the special case of the bang-bang control problem, is
almost large enough to fill a five foot shelf. Furthermore, most of these
problems seem to require treatment by techniques not ordinarily associated
with the familiar Laplace transform theory or other tools commonly used
by practicing engineers. This is undesirable from the viewpoint of (tuickly
reducing the theory to practice. It is the understood purpose of this sym.-
posium and this paper to accomplish tile following: to present in a self-
contained manner a body of recently developed techniques in the control
field; to derive useful results using a minimum of advanced mathematics
but a maximum of physical and geometrical intuition; and to show concrete
working applications of the theoretical results.
To achieve these ends, we shall adopt a four step procedure in presenting

tile material:
(1) The basic motivation and approach to the solution of a general opti-

mal control problem will be given immediately after its statemctt.
This will serve as an outline and guidepost for the detailed develop-
ment which follows.

(2) The method of solution will be presented for a special class (linear) of
optimal control problems to illustrate th.e steps involved.

(3) The necessary modifications for extension to the general (notflinear)
case will be shown.

(.4-) Finally, practical applicatioJts and experiences will be discussed.
It is well to point out here certain basic assumptions we have adopted i

writing this paper. We have assumed that the readers to whom this paper
is addressed are not overly concerned with the matter of rigor in the techni-
cal developments. For example, any funetiott used will be assumed to possess
the necessary degree of smoothness to give rise to continuous derivatives
of such order as may be required. Moreover, we shall not hesitate to drop
the use of any terse, but precise, technical terms in favor of a more pie-

* Received by the editors July 5, 1962 and in revised form April 16, 1963. Presented
at, the Symposium on Multivariable System Theory, SIAM, November 1, 1962 at
Cambridge, Mass.

Harvard University, Cambridge, Mass.
Deceased. Formerly with the Minneapolis-Honeywell Regulator Co., Boston,

Mass.
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turcsque but perhaps less scientific description if the latter motivates our
intuition better. On the other hand, we shall attempt to be accurate in the
conceptual description of the various methods of solution, e.g. the distinc-
tion between the necessity and sufficiency of a condition will be emphasized
instead of the pathological case for which such a condition does not apply.

2. llotations and terminology. Since this paper concerns methods applic-
able to general systems, it is necessary to manipulate formulas and equations
possessing an arbitrary but finite number of variables. Thus, the use of
vector matrix notation is almost imperative. The transpose of a vector or
matrix is denoted by the prime ’. The inner or vector product of a vector
with itself is called the norm and is denoted by x’x x = x.
The generalized norm is then given by x’Ax x . -,==xxa
provided that A is positive definite. Components of a vector or matrix are
indicated by subscripts. Occasionally, when additional clarity is desired or
possible, we shall employ the subscript notation in conjunction with the
vector-matrix notation.

Finally, it is assumed that the readers are familiar with the state descrip-
tion of a dynamic system at least on the conceptual level. The detailed
description and definition of terms such as state variables, trajectories,
etc. can be found in [2] and [8].

3. Problem statement. To state the control problem properly, it is eces-
sary to define some terms:

(A) Plant--Throughout the paper, it is assumed that the dynamic
system, or plant, under consideration is governed by

2 f(x; u; t);x(to) c
(1)

2, fi(Xl X, Ul Ur t) xi(to) Ci fori= 1,... ,n

where x’s are the generalized state variables such as position, velocity,
energy, mass, heat, etc. Equation (1) further implies that the future
behaviour of the system is completely determined by the specification of
the state of the system at any one instant (a finite set of numbers) and
the input u(t) from that instant on.

(B) Performance criterion--The performance of the system is measured
by

(2) J X(x(t) -t- L(x(t), u(t), t) dt,

where the interval t to is called the control interval. If we define

(3) 20 L(x; u; t) f0(x; u; t);xo(to) O,
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then

(4) J X(x(tl) zr xo(tl) (x(tl) ).

Thus, there is no loss of generality if only the minimization of (x(t)) is
considered by adjoining (3) to (1) and the addition of an extra state
variable x0. Hence i 0, n.

(C) Constraints--In addition to (1), it is often required that the behaviour
of the dynamic system satisfies certain constraints. There are generally
two types"

(i) terminal constraints are represented by

(5) d

or

i(xl(t.), Xn(tl), tl) d, for i 1, m -<_ n

(ii) the so-called in-flight constraints are imposed on the system through-
out the control interval. Typically,

() x(t)l <= (t)

(7) u(t)l <= "(t)

Note that these are inequality constraints rather than equality constraints
(the latter when imposed would simply reduce the number of state vari-
ables). By redefining state variables it can also be shown easily that more
involved functional constraints of the inequality type can be handled by
(6) and (7).

It is now possible to formulate two problems of interest"
Optimal control problem" Given (A), determine u s function of time

such that (B) is minimized subject to (C).
Optimal feedback control problem: Given (A), determine u s function

of the instantaneous state x such that (B) is minimized subject to (C).
The problems s stated bove re quite general. The determination of

the thrust program of rocket such that it rrives t its destination with
mximum pylod is n example. The determination of the start-up se-
quence of chemical process such that it reches the operating point with
minimum cost is nother example. The optimal control problem is essen-
tially open loop since the solution is only optimal with respect to the given
initial conditions of the system. O the other hnd, solution of the feedback
problem permits closed loop operation which is important in mny pplic-
tions where noise nd random disturbances re present. However, solution

It is ssumed that solutions to these problems exist, i.e., the problems are well
posed.
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to the closed loop problem proves to be very difficult. Only in the case
where: (A) is linear, (B) is quadratic, and (C) are simple terminal con-
stmints does one presently have a closed form solution. On the other hand,
the open loop optimal control problem is nevertheless important in its own
right for the following reasons: (i). The open loop solution will permit us
to examine the ultimate performance of the system. This knowledge is
necessary when one wishes to evaluate any suboptimal or approximately
optimal control scheme for feedback operation; (ii). In many applications,
an open loop solution is all that is required, e.g. in trajectory analysis oi’
space missions; and (iii). There are cases, e.g. 24-hour satellite control,
where the open loop solution can be carried out on a sufficiently fast time
scale compared with the dynamics oi" the system so that one effectively has
instantaneous solutions. Thus, i’eedback operation is agait possible.

In this paper, we shall concentrate on the development of methods for
the solution of the general optimal control problen. For a discussion of the
closed loop problem, readers are referred to [13] and the discussion following

The optimal open loop control problem as stated above is known as the
Bolza problem in the calculus of variations. Effective numerical methods
for solving the general problem were not known until the recent work of
Bryson and Kelley [1, 3]. The purpose of this paper is to treat the problem
from a somewhat different viewpoint by emphasizing the roles played by
the constraints. This approach was motivated by the results obtained in
the original solution of the well-known bang-bang control problem [8.]
Briefly, we consider the following steps to the solution of the problem:

(i). Discretization of the problem: Since a closed form solution to the
general problem is not available at present or in the foreseeable future, we
consider a numerical solution using a digital computer. This implies that
the problem must be discretized in some manner either by replacing the
differential equations with differetce equations or assuming, as we have
don.e, that the control u is piecewise constant.

(8)
,,,(t) u(to + ;3’),

k 0,... ,K-- 1,

There have been other proposed numerical methods for solving the general
two point boundary value problem. Almost all these methods involve the repeated
integration of the system as well as the adjoint set of differential equations in one
direction. Except in special cases, one set of these differential equations is always
unstable which leads to numerical difficulties concerning convergence [see W. Kipi-
niak Dynamic Optimization and Control M.I.T. Press, 1961 p. 42]. On the other hand,
this ditiiculty is not inherent in the approach to be described. For the more specific
class of variational problems, e.g. time optimal linear solutions, there are various
special techniques (see Lee [15] and Neustadt [16]). Kalaba [171 introduces another
numerical method, which however does not handle iuequality constraints.
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where T (tl to)/K; i.e., instead of determining a continuous time
function, the values of the function at discrete instants of time are de-
termined. The control interval is divided itto many steps. Thus, the
problem cat be regarded simply as a problem of minimization of a func-
tion of maty variables complicated by some additiottal equality and
itmquality coditions.

(ii) Solution by succcssi;e approximation: In order to locate the minimum
of a furtction of many variables, one often employs the method of steepest
descent or successive approximation. Conceptually, otte starts the solutiott
by guessing a set of values for the variables. This yields a certaitt value for
the fun.ction which is generally not optimum. For this trial or nominal set
of values, one corrputes the gradient of the function. It is well known that
the directiott specified by the negative gradient is the direction along which
the rate of decrease of the fumtion is the greatest. Thus, knowing the
gradient one in fact knows how to change the nominal set of values of the
variables to obtain an improvement in the criteriott function. This process
can be repeated for each new set of values of the variables with a small im-
proveInent each time in the criterion functiot (so as not to violate the im-
plicit assumption of linearity when only gradient information is utilized).
In the limit, the process hopefully converges to the true minimum.

(iii). Problem of constraints: The procedure in (ii) is applicable if no addi-
tional constraints are imposed on the system. The effect of the constraints
is to make the gradient of the criterion function nonzero at the minimum.
It fact, the gradient takes on definite values depending on the constraints.

Consequently, the solution to the general optimal problem reduces to
essentially three crucial questions"

(1) How to compute the gradient?
(2) How to make a descent subiect to the constraints using the gradie.rt

information?
(3) What is the value of the gradiet at a minimum (or how can one be

sure that a mitlimum has been attained)?
The answer to these queries can be found by applyitg some elementary

knowledge of differential equatiorts, n-dimensional geometry, and nonlinear
programming, respectively. This will be developed in the next section for
the special class of linear systems and extended to nonlinear systems in
later sections.

Obviously, there are many other means for discretization each entailing a differ-
ent degree of approximation. However, these are subjects of numerical analysis and
are outside the scope of this paper.

The actual functional relationship may be exceedingly complex and impossible
to write down tnalytically. However, in all that follows, we shall never need this
functiontl relationship. All that is required is that the function be computable, i.e.,
the governing differential equations arc given.
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4. Linear systems. In this section, the following assumptions are made"
(A) Plant--The dynamic system is governed by

(9) 2 F(t)x + g(t)u, x(to) c.

Only single input plants are considered here to simplify the discussion.
However, extension to the case of multi-input plants is straightforward
and is discussed later.

(B) Performance criterion.

(10) J--II X(tl)IR xixjrij-- x’(tl)RX(tl)
i=1 3"-=I

where R is a positive definite or semi-definite matrix.
Although a treatment of more general criterion functions involving

integrals can be included as shown in section 3 by defining new state
variables, we shall not do so here, since this will add a nonlinear equation
to (9) and destroy the simplicity of the linear equations which we wish
to preserve in this section.

(C) Constraints--One of two types of constraints will be considered:

(11)

where xj is any component of the state vector.
From the above assumptions, it is seen that only a special class of the

general problem is considered here. This is done not only because the
special problem is interesting in itself but also because it illustrates the
salient points in the general method of solution most effectively. Once the
technique has been established for this simple case, extension to the general
nonlinear case is almost trivial.

(1) Method of solution. Following the steps outlined in section 3, the
problem is first discretized by letting

(13) u(t) u, l <= < l + 1, for l 0,-.., K- 1 t 1

where we have taken the initial time to as the origin and T 1 without
loss of generality. Define

(14) u

then the determination of u(t) for 0 =< _-< tl is equivalent to the determi-
nation of u, the vector of values of u(t) at different control steps. Hence-
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forth, we shall use u and u(t) interchangeably in this section without
further explanation.
Now we pose the question how does the criterion function J change due

to a change in control at step k? This is given via the chain rule for differ-
entiation

OJ Ox,:(tl) forl 0,... K- 1.
og

Ox(tl) Ouk
(15)

Ou =
which says that the ctange in J due to a change in control at step/c can
be evaluated by first calculating the change in J due to change in the
terminal states and then the changes in the terminal states due to the
change of control at step
Now define Ox(tl)/Ouk as the ikth element of an (n X K) matrix H,

then eqn. (15) can be written as

(15)’ GradJ It’(Grad(t)J) 2H’RX(tl).
For any given control u, (Grad(t),/) can always be easily computed by
computing x(t) through direct integration of the system equations. Thus,
the problem of calculating the gradient is reduced to the problem of calcu-
lating the elements of the matrix H, i.e., the change in the terminal state
x(tl) due to a change in control u. This is provided by differential equa-
tion theory [10]. We have

(1) Xl(I) (I)(l ,o)X(o) - (I)(l, )g()() d,

where q(t, to), (tl t) satisfy the equations

d (t, to) F(t)q(t, to); q,(t0, to) I(.7)

(18) d (b, (tl r) --F’(r)eP’(tl 7); (t. tl) I.
dr

Equation (18), the so-called adjoint equation to the system equation, is of
direct value to us since from (16) we get,

(19)
Otk

,:a(tl, t)gi(t) dt (H) o’( 11, )gj()

where lc __< __< lc --I- 1. Thus, the matrix H can be calculated by integrating
(18) backwards from t with the initial condition .(t, t) ..
Now consider a small variation iu about any given control u, then a

first order series expansion yields,

The derivation of (17) and (18) can be found in many texts such as [10].
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-1 aJ(20) AJ J+ J (GradJ)’tu
k=0

Uk.

One sure way to obtain an improvement for the criterion function. J
is to make auk to have the opposite sign of OJ/Ouk, i.e.,

(nw) (old) OJ
\ul

where v is a positive scale factor regulating the amount of the change in
control. However, such a change in control may not always be possible
due to the constraints on u or x.- (11 and 12). Furthermore, even if it were
possible, the scale factory must be detemnined so as to ensure ,l jold
<0.
Case I. Constraint on u(t). Suppose we consider the second term in th.e

series expansion o’ (20),

(21) A,/ ((?rad,,,,l)’u q- au’H’Rl[u.

We wish to choose a small u such that AJ in (21.) is less than zero. This
is done by first defining a dummy vector v proportional to u,
(22) u vv.
The vector v is then determined by either of the two following equations,

and the proportionality constant r by (25)

,K--1

or

(24) v.

(25)

OJ
if _>_ 0

0u

if < 0

r/ Sat (GradJ)’v

,K--1
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where

if I1<1sat(a) 1 if lcl >= 1.

Equations (22-25) essentially accomplish the following tasks: (a) Equa-
tion (20) tells us the direction to move in the "solution space" (the space
with u0, Ul, u/_l as coordinates) to obtain the largest change in
the criterion function J. (b) However, the constraint (11) may, and
often does, prevent us from making a descent in that direction. Conse-
quently, a feasible direction of descent has to be chosen as represented by
(23) or (24). These are the directions that do not involve a sign change
of the gradient components. (e) Equation (25) tb.en tells us how far we
should go along this feasible direction to get the best improvement.

Figure 1 provides a simple geometrical interpretation of the process.
Here, for the sake of illustration, ofly a two dimensional solution space is
considered, i.e., the control interval consists of only two steps. Every
point in the solution space represents a control. The set of admissible con-
trols is inside the rectangle with center at the origin, while the lines of
constant J are quadratic surfaces in this solution space. For any point A
in this space the gradient separates the space into two halves. Small

DIRECTION OF NEGATIVE
GRADIENT

///’ \\\ DIRECTION
..,...,,..- -"""--.. -\ ONE

\

LINES OF CONSTANT d-._....i/ 11

r-L ..---/ / /------------ \\\/ "’" /!’ / _---"" //’ o,o,,O,wo

uo

TANGENT LINE
REGION OF" CONTROL AT A
ADMISSIBLE

Ii’I(. 1. Solution space interpretation
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movement from A into one side causes the function to decrease; into the
other side, to increase. Direction AC is simply the projection of the nega-
tive gradient onto the boundary and is the direction specified by (23),
while direction AB seeks the nearest vertex as specified by (24). The
distance to go along either of these directions is determined by the vari-
ation of J along these directions. In Figure 2b, it is not dvantageous to
proceed as far as possible, i.e., v 1, while the reverse is true in Figure
2a. These geometrical interpretations extend directly without modifi-
cation to higher dimensions.

Case II. Constraints on xj. This case can be easily reduced to case I.
We note that

(26) ixj Bu,
where

Ox(1)/Ouo

[x-(1)
LOx(K)/auo... Ox(K)/au_J

All the elements in B and (Grad,J) are known quantities and can be
computed as discussed before. Further.more, since B is always triangular
(a direct consequence of the causMity property of the dynamic system),
it is feasible to invert B. Then substituting (26) into (21), we get

(27) J (g+)’x + x’(B-)’H’RH(B-)xy

where

(28) g+ B- (GradJ).

Now the situation is same us before, a computing scheme analogous to
case I is defined by letting

(29) x vw



OPTIMAL CONTROL WITH INEQUALITY CONSTRAINTS 329

J

(DISTANCE ALONG
DIRECTION ONE)

(o)

(b)

FG. 2. Distance for descent

(DISTANCE ALONG
DIRECTION TWO)
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(30)
x.()

W g+
x;()

if --g+ > (, x.())
if --fl,-- x.() =< --g+ _-< (-- x.())
if -g,+ < -- x()

or

(31) w 1,... ,K-- x.(g) if --g+ < 0

(32) n sat --2w,(B__),H,RHB_lw]
Exactly the same geometrical interpretation as in Fig. 1 applies in this
case, except that here the space formed with the coordinates x(1),
x(2), ..., x(K), must be considered. Every point in this space defines
a trajectory. Changes in trajectory are linearly related to changes in control
by the linear transformation B. Thus a hypercube in the x-space becomes
a polyhedron in the solution space. This is precisely the reason why it is
diifcult to determine a feasible improvement directly in the solution
space for the constrained state variable case. The boundary on u at one
time depends on the change in u at other times. To co,mpletely specify
the boundary of the polyhedron in the solution space the position of 2
vertices must be determined. For any practical K, say 100, computation
time can easily surpass the age of the universe.

(2) Convergence and optimality. Section 4, describes a complete cycle of
computation for linear optimal control problems subject to control or
state variable constraints. Hopefully, by repeated application of this
procedure, the true minimum will be monotonically approached in the
limit. The purpose of this Section is to indicate that this is indeed so.

Intuitively speaking, there is really no question concerning the con-
vergence of the method. This is clear if we refer back to the geometrical
interpretation of the problem in Figure 1. The situation there can be
thought of as that of setting free marble on the surface of bowl which
has constraining walls built in it. Depending on the location of the con-
straining walls, the marble eventually rolls to a stop at (i) the bottom of
the bowl, (ii) against the side of a constraining wall, or (iii) at the inter-
section of more than one constraining wall. Such a point is obviously the
global minimum for the problem. Algebraically, this is expressed by the
fact that the computation process comes to stop only when

u 0 when (GradJ-) < 0

(33) > u >-- when (GradJ) 0 lc 0,..-, K 1.

-7- u 0 when (GmdJ) > 0.

This claim can be seen as follows"
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If (33) were not true and the computation stops (i.e. improvement
becomes infinitesmal) then (23) or (24) must define a v which is not
infinitesimal. Thus v given by (25) cannot be arbitrarily small which
implies that AJ from (21) is not infinitesimally small. This contradicts
the assumption that no more improvement can be made.

Equation (33) says that the terminating (hopefully optimal) control has
the property that every gradient component is either zero when the control
is off the boundary (meaning no improvement can be made even though
variation is possible) or pointing outwards when the control is on the
boundary (meaning that improvement is possible only by violating the
constraints). Thus, the terminating control obviously satisfies the neces-
sary conditions for an optimum. To prove that the conditions of (33) are
also sucient, some further artifices must be constructed and certain ele--
mentary knowledge of nonlinear programming must be invoked. Define,

--1 0 0 10 --1

--1 0
0 0 --1
1 0 0
0 1 0

1 0
0 0 1

K cols.

then the optimal control problem with constrained u can be restated as
minimize J subject to A u /1 < O. Now consider the Lagrangian

(34) 4,(u, ) J --[- h’(Au ).

Differentiation directly verifies that

(35)

(36)

and

(37)

Grado(u, },o) 0,

Gradx(u, k) -<_ 0 for ), >= O,

kO,(Au .) O.
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Further, is convex in u since J is convex in u. If u is given by (33) and
0 is given by

(38)

(39)

X0
0

OJ

if ----u 0

if -,--u 0

then (35-37) and the convexity say that the particular pair u and 0
yield a saddle point for the function for >= 0 i.e.,

(u, x0) >__ (u0, x0) >__ (u0, x)

for all X >= 0 and all admissible u. However, by a well-known theorem of
0nonlinear programming [11] we know that if u, is a saddle point for

then u must be a global minimum for J. This proves the sufficiency. The
same arguments can be employed for the case of constraints on x since
it is one-to-one related to the u-constrained case. We omit the details.

Actually, the above construction is not as artificial as it may seem at
first glance. Equation (34) is highly suggestive of the conventional La-
Grange Multiplier method for minimization subject to equality constraints.
The method of nonlinear programming merely extends this approach to
the case of inequality constraints. The multiplier is seen to be intimately
related to the gradient of the function to be minimized (39) which is in
turn given by the solution of the adjoint system of equations (18). In
the classical calculus of variation literature, the adjoint equations are
known as the "multiplier rule" and their solutions the "multiplier func-
tions." Viewed in the present context, they acquire more of a physical or
intuitive appeal and iustify their existence through very simple arguments.
The method described in section 4 is simply a constructive approach to
the determination of the multiplier or the multiplier function },(t) if the
vector is viewed as a time function. Reference [8] shows how, in the well-
known bang-bang control problem, the gradient (GradJ) can be re-
interpreted to yield the various known conditions for an optimum.

It is also possible to derive an interesting conclusion when one of the
state variables is constrained in magnitude. Equation (26) shows that it is
identical to the control variable constrained case except for the additional
nonsingular linear transformation B. Since such a transformation pre-
serves all properties in linear spaces, we are led to the following conclusion"

For linear dynamic systems, the minimum time or the minimum terminal
error (provided it is finite) problem when one of the state variables is con-
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strained will have bang-bang solutions, i.e., the constrained state variable
must remain on the boundary at all times except at the instant of switching.
Consequently, there must be impulsive actions in the optimal control function.

This conclusion is experimentally verified in section 5 where computer
simulations of the techniques discussed here are carried out.

(3) Remarks and extensions. Having described the method in previous
sections for a special class of systems, we are now in a position to discuss
some ready extensions of the method to more involved cases. The frame-
work of a linear dynamic system, however, will be retained.

Multiple control and state variables constraints. For purpose of discussion,
we shall assume there are r input and p state variable constraints.

(i) r constrained inputs, no state variable constraint. Since the system is
linear, the superposition principle holds. Instead of one gradient, there
will be several. Equation (20) becomes,

(40) AJ (Grad,J)’u + - (GraduJ)’u -O((u)2).
For every constained input, we have

m- 1,...,r

j 0, ..-,K- 1,

i.e., a set of equations similar to (23). The method and the proof of con-
vergence may be made in the same way.

(ii) r unconstrained inputs and one state variable constraint. In this case,
one of the inputs can be used to keep the system within the state variable
constraint, e.g. the first input.
We have 6x Bu + + BrU. Then (40) becomes

(42) AJ (g+)’x - [(GraduJ)’
m---2

(GradJ)’B-B,]u".

Instead of (41), we use,

(43) v- -jth component [(Grad.’J) B,((B-) (GradlJ)]

m-- 2,...,r

j- 0,.-.,K-- 1.
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(44)
x-(O

rye ge+
if -g,+ > (, x.())
if --fl- x.(f) < --ge+ < (fie- x.())
if --ge+ < --tie-

which is the same as (30), and

3u B1- 3u B2(u Bu).
Equation (43) in this case simply expresses the fact that there are no
constraints on inputs 2 to r. Since originally there are no constraints on all
inputs, it does not matter which input is chosen to keep tile system within
x. limits. In practice, there may be other considerations which will cause
us to prefer one input to another.

(iii) r unconstrained inputs and r constrained state variables. This is
analogous to Case II discussed in section 4. All constraints on the r state
variable re reflected as constraints on tile r inputs. The relation is pro-
vided by a(rK X rK) mtrix which is block triangular. Consequently, its
inversion means the inversion of series of (r X r) matrices. This may
become computationally unfeasible for large r. Otherwise, conceptually
the solution is the same as Case II in section 4 with (30) duplicated r
times.

(iv) r unconstrained inputs less than r constrained state variables. This
case is equivalent to (3) plus the addition of r p unconstrained inputs.
Conceptually the solution is tile same as (2).

(v) General input/output constrained problem: We shall only discuss
the case to illustrate the problems involved. Consider the same problem as
in Section 4 but with both the control constraint (eqn. 11) and the state
variable constraint (12) imposed. Then to perform one cycle of the suc-
cessive approximation computation we must solve the following problem"
determine iu such that (GradJ)’tiu < 0 subject to

--x <= Bu x - x

The difficulty with this case is the fact ttat with both constraints imposed
it is no longer convenient to work in either the u-space or the x.-space.
Both constraints cannot be expressed simply in any one space as we have
done in Cases I and II. However, the above problem can be recognized as
one iteration of the following linear program problem" minimize (GraduJ)’v
subject to

a-<_Bv<_a+

b-<_v<_b+
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where we identify v as u, a+ as/3 x., and b+ as , u, etc. Mgorithms
to perform iterations for linear programs, such as the simplex method, are
well known. Thus, we find that the general input/output constrained
problem can be solved by series of linear programs with different cost
vectors (GmdJ). This statement pplies lso to the more general cse
with several constrained inputs nd outputs.

Another terminal criterion. Instead of J z(t), one my consider
general terminal criterion J (x(h)). The only requirement is that
should be convex which is almost invariably satisfied in practice. Compu-
tationally, we simply replace 2 Rx(h) by (Gmdx(t)) in ll the equations
in. section 4. In (21), (25), (28), and (32) the mtrix R is replaced by
the mtrix formed by O/Ox(h)Ox(h). This, of course, is equivalent to
fitting a quadratic surface to the generM surface at the point in question.

Determination q[ "". It was pointed out that the sclr vrible ""in (22) n.d (29) plys the role of distmme of descent Mong the feasible
gradient direction. A reasonable value for "v" ws given by (25) or (32)
which requires the evMuation of second partial derivatives. Since we are
concerned primarily with devising an efficient method for making an
improvement, use of (25) or (32) may be eomputationally uneeon.omieal.
A more crude approach would simply assume some "" and integrate the
system equations to verify if an improvement has actually been made.
If the new control produces a worse J, then the error in esgimating the
improvement gives us an estimate of the magnitude of the 2nd order term
in (21) or (28). A new and appropriate "" can then be chosen and tried
again. There always exist a v > 0 such that the new control yields an

improvement.
Problem of terminal constrainls. In addition to minimizing (x(h) ), the

problem may require that tim state of the system terminate in some sub-
set of the state space by the additional constraints

(45) i(x(t.)) di, .for i 1,-.-, m.

To handle such a ease, we modify the criterion, function to

(46) J ((x(h)) 0) - t,((x(t) d,)

where 40 is some clearly unattainable mitinu.m of , and tti are large posi-
tive constants. It is intuitively reasonable that the solution to the modified
problem without the terminal constraints can be made arbitrarily close to
the original problem with the terminal constraints, provided the u’s are
chosen appropriately. Details for doing this can be found in [9].

There is another exact way of incorporating terminal constraints when
no in-flight constraints are simultaneously present. This is the gradient
projection technique due to Bryson [2]. Essentially, the idea is to project
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2

100%

minimum solution tl solution time

time for zero norm

FGURE 3

the gradient (Grad,,J) onto the intersection of the hyperplanes tangent to
the surfaces i(x(tl)) di, i 1, m at the point in question in the
solution space. If the improved solution is obtained by moving along this
projected gradient, th.en the new terminal state due to the improved con-
trol does satisfy the terminal constraints excepting for a second order
effect. A correction scheme to handle the error accumulated can be easily
incorporated. The computation process stops when the projected gradient
becomes zero, i.e., the gradient is normal to the subspace defined by
b(X(tl)) d, i 1, ..., m.
When in-flight constraints are present, the incorporation of the gradient

projection scheme is much more cumbersome. It is not clear at this stage
which of the two schemes (gradient projection or penalty function) is
more efiicient in practice when in-fliglt constraints are present.

Problem of minimal time. This problem is usually stated as minimizing
the time for the system to reach some fixed terminal state. However, an
equally satisfactory way is to minimize the error from this fixed terminal
state for a fixed time. If the minimuIn error for a particular fixed time is
finite, then it immediately follows that the time optimal problem can not
be solved in this amount of time. Thus, by observing the behaviour of the
minimum error problem for several, fixed times, the minimal time can be
found quickly. This situation is illustrated i Figure 3.

General problem qf variable terminal time. Instead of a fixed control in-
terval, the problem is to be terminated when a certain stopping condition

(47) (X(tl)) 0

is reached where 2 is usually some monotonic function of time such as the
altitude. The change in the criterion function due to changes in terminal
state now becomes a more complicated expression. We have,
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(48)
J (G’adx(t)J)’6x(tl) q- dJ

OJ dJ
G  x (tl) +

The second term is contributed by the fact that a change in the terminal
state also changes the termination time. From (47),

(49)

Combining (48) and (49) and eliminating 8t, we get,

or

(50) 0  il)
The vector J/Sx(t), i 1, n plays an equivalent role as the vector
(Gradz(t)J) 2Rx(t) in all equations in section 4 or the more general
vector (Gradx(tl)q)) as discussed earlier in this section. If this identification
is made, all other aspects of the method remain the same. Lastly, (50)
cun be directly generalized to cases where additional terminal constraints
are present. This then becomes the gradient projection technique of
Bryson and Denham [2].

5. Nonlinear systems. Actually, almost all the crucial steps towards the
developement of a general, computational method for the solution of the
optimal control problem as formulated in section 3 have been worked out
in the last section. The extension to the general nonlinear case is really quite
trivial from a conceptual viewpoint. Essentially, we adopt the following ap-
proach: For any given control to a nonlinear system, there results a specific
trajectory. The equation of motion can be linearized about this nominal trajec-
tory. For small perturbation in control and trajectory, the system obeys the lin-
earized set of differential equations. Consequently, the techniques developed in
the previous section can be used to devise a small improvement in control. Hav-
ing obtained a new control, and thus, a new trajectory, the nonlinear equations
can be linearized again about this trajectory. The computation cycle repeats.
Mathematically speaking, the idea is expressed by considering a variation
of control and trajectory to the system differential equation (1).
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(51.) 2 -t- ti2 f(x + x; u - u; t), x(to) c.

Expanding the left hund side of (51) by Ta,ylor series and simpliflying,
we obtain the well known variational equation

(52) F(x(t), u(t) )x + (;(x(t), u(t) ), ,x(to) 0

where the ijth clement of the (n X n) matrix F is Of/Ox and the ilcth
element of the (n X r) matrix G is Of/Ou.
The mtrices F and G are functions of the nominal trajectory and con-

trol. For specific x(t) and u(t), they are functions of time. The solutions
to the time varying but linear differential equations (52) can be written
down as

(53) x(t) (I).(tl, t)G(t)u(t) dt,

where (t, t) obeys the adjoin.t, set of differential equations to (52)

(54) d)’(t, t) --F’(t)’(tl t), (t t) I.

With (53) and (54), the matrices H nd B in (15), and (26) in section
4 can always be computed. Once H and B re known., the rest of the pro-
cedure goes through without modification.
As a practical matter, there is simplification worth mentioning. Iu

Section 4, we considered the computation of H and B as separate opera-
tion independent of the initial conditions of the dynamic system, i.e., the
backward integration of (18) need only be performed once before the
actual iterations and it is not necessary to repet the integration during
each computation cycle. This situation is no longer possible for the non-
linear case. Since the mtrices F and G depend on the trajectory and the
control, (54) must be integrated bckwards during ech computation
cycle to determine the H and B for that particular cycle. This involves the
integration of n linear differential equations on the digital computer--a
straightforward but nevertheless somewhat cumbecsome operation. This
labor can, however, be easily reduced to only n equations by the following
manipulation. Consider the single input case once gain. Note that instead
of eqn. (15), the (G-rdJ) cn lso be expressed as

(GmdJ) g’’(Grad(t)J) 2g’’Rx(t), 1 0,... ,K- 1(55)

where

(56) q)’

where to + ] -< =< to + k + 1, (cf. (19) and (S)).
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Each submatrix 1’ is simply the solution of (54) at some instant or
small interval to + lc to to + lc -t- 1. Thus, the vector

p(t, ) 2’Rx(t)
is obtained by taking a linear combination of the columns of ’(ti, )
which are solutions of the adjoint equtions (54) for specific initial condi-
tions. Equivalently, if we take a linear combination of the specific initial
condition,s, then we should be able to obtain the vector p(]c) by i.-.tegrating
the differetial equation

(57)
p(t t) --E’p(t. t)

backwards from t. This is only n equations istead of the n: equations
specified by (54). The gradient (GradJ) is then obtained by taking a
further linear combination of the solution of (57). For general terminal
criterion with variable terminal time, oc uses the initial condition
J/x(t) as given by (50) in place of 2Rx(t) to start the backward
integration of (57).
To recapitulate" a general, monotonically converging, computational

method for solving general nonlinear optimal control problems with bounded
control variables can be described by the following steps:

(a) Start with any feasible control u(t) as a guess.
(b) Use the u(t) and integrate the system equation (1) to obtain the nomi-

nal trajectory x
(c) Linearize the system equation about the nominal x(t) and u(t) to

obtain (52).
(d) Compute the gradient (GradJ) by integrating (57) backwards from

tl with the proper initial conditions.
(e) Devise an improvement 5u(t) via (2 )-(25).
(f) Let the new control be u(t) - u(t) and return to step (b).
Executing the bove scheme many times one eventually arrives at a

computation cycle which has the properties that: (i) For tm system equa-
tion (1), one has a set of initial coditions X(to), a control u(t), and a
resultant trajectory x(t); (ii) For the x(t), the adjoint linearized (57)
has a set of initial co.ditios p(l., t) and a solutioa p(t, t); and (iii)
Conditions (i) and (ii) arc related to the fact that the variatio of the
Hamiltonia

(hS) H -J’(; u; t)p?(, t)
il

cannot be increased anywhere along the trajectory, i.e.,
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or

(GraduJ)’tiu 0. (cf. (23))

The Hamiltonian has reached its maximum everywhere along the trajec-
tory.
The connection of conditions (i-ill) with the celebrated M:aximum Prin-

ciple of Pontryagin scarcely needs mentioning.
The computation procedure for state variable constrained case is simi-

lar. We omit the details [9]. However, three points of practical importance
should be mentioned. First, it should be pointed out that the state variable
constraint is handled in the nonlinear case only in an approximate manner
since a linearization procedure is involved. A correction routine may or
may not be needed depending upon whether or not x- is a convex function
of the uk’s. Secondly, the computation of the matrix B can be most easily
obtained by direct integration of tim linearized system (52) with ap-
propriate initial conditions rather than via the use of adjoint equation.
Lastly, B-1 is never needed in practice. Only the solution of (26) is neces-
sary. This is a still simpler task than inverting a triangular matrix.

6. Experimental results.
(1) Linear systems. In order to obtain some computational experience

with the method, two pilot programs were written in FORTRAN for the
IBM 7090. The two programs essentially carry out the method of solution
described in section 4 for control variable or state variable constrained
linear systems. The specifications of the two programs are as follows"
Program A. Given"
a) a multi-input dynamic system 2 Fx - Gu

where F constant square matrix (n >< n)
G constant matrix (r X n),

b) an initial condition x(0),
c) a constraint on the controls, of the form u(t)l <_- ,(t),
d) a constant square matrix R, to evaluate the performance,
e) a terminal time tl or equivalently the number of control steps K.

Then Program A finds u(t), 0 < < t,., satisfying the constraint (c)
which minimizes the quadratic form

V x’(t)Rx(t).
Program B. This program is similar to Program A, with the exceptions:
a) the constraint is of the form

x(t)[ --<_ (t)
where x(t) is the nth component of the state vector.

b) the dynamic system has to be single input, i.e., r 1.
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START

READ IN GENERAL DATA.
CHECK FOR CONTROLLABILITY.

READ IN NITIAL CONDiTiONS.
COMPUTE TERMINAL NORM.

COMPUTE THE GRADIENT .

(I) GRADIENT PROJECTION#CHEME

FIND OPTIMAL DISTANCE "11 FOR DESCENT ALONG THE FEASIBLE DIRECTION

c’ u c’ R-’ xj-qu- u HPH u xj R- R-" H PHR R- xj

YES COMPUTE NEW NORM.
HAS I1- DECREASED

IMPROVE TERMINAL NORM BY DESCENDING ALONG THE
FEASIBLE DIRECTION FOR LENGTH"I"I.

IS THE PRESENT LOCATION IN THE SOLUTION SPACE ON
I) A BOUNDARY WITH THE RESPECTIVE GRADIENT COMPONENT POINTING OUTWARDS ?
2) INSIDE WITH THE RESPECTIVE GRADIENT COMPONENT g?

(IS THE SADDLE POINT CONDITION SATISFIED?)

YES

-NO - COMPUTE TRAJECTORYPLoT TRAJECTORy.WITHCONrROL JUST FOUND

OUT

VI. 4. Flow chart for computer program

In both Program A. and B the complete controllability of the system is
checked and the figure of merit computed [14]. Furthermore, the transient
response of the system under optimal control is also automatically plotted
by the computer. The flow chart for the programs is shown in Figure 4.
The programs are useful in solving the following two general types of

problems for linear systems with inequality constraints: (i) to get as close
as possible to some given terminal state or set of terminal states in a given
time period; and (ii) to get to some given terminal state or set of terminal
state in shortest time.
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Examples. As an. example for demonstration, we chose a linear system
described by the transfer function

(s + 0.5)
(s q- 1)(s q- 2)(s q- 2 q- 2)"

In the state vector notation, the dynamics of the system become"

21 0 1 0 0 xl 0
2 0 0 1 0 x. 0

Assume a disturbance or an equivalent step input

z((0)
_x,,(0) L 0 _1

no

It is desired to bring xl, x, x:, x4 to zero in minimum time, while con-
straining the input to u(t)l _<= 1.
Using Program A repeatedly, (with a positive definite matrix R), the

results as shown in Figures 5 and 6 are obtained.
Instead of constraining the input it may be desired to constrain one of

the components of the state vector, e.g. x4, xl <= 1.
Using Program B with the same matrix R one obtains analogous results

displayed in Figures 7 and 8. Note that the constrained state variable,

1.0

5 t (sec)

1!’(. 5. Minimum terminM norm as a function of termina,1 time tt (control constraint)
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u(t)

1.O

-1.0

(sec.)

FI(. 6a. ()pi;imnl con|;ro] u for ihe ermin,’fl time tl 2.5 sec (coni;r()l (;onsi,rtfint)

1.o

-1.o

x4

k (see.)

Ii’o. 6b. State ve(;t()r components when i,he optimal control is applied
(c()ntr()l (;()nstraint).

x4, indeed exhibits the bang-bang property as predicted in section 4.
(2) Nonlinear systcns. Optimal control of nonlinear systems wit|t

inequality constraints on tit(; control or state variable have not been solved
extensively at the time of the writing of this report*. For nonlinear systems
without inequality constraints, Bryson tnd Kelley have reported numerous

* For more recent developments, see Ph.D. thesis by W. F. ])enham, Harv’-ard
Univet’sity, 1)ivision of Engineering and Applied Physics, J,me 1963.
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Min

t (sec,)

Fc. 7. Minimum terminal norm as a, function of termina,1 time tl (constraint on x4)

u()

-I
u(t) FROM Fig. 6a

Fc. 8,’. Optimal control u for l;he terminal time t 2.5 sec. (constraint on

2;4)

computational examples in [1, 2, 3, and 4]. Kelley has recently demon-
strated so:me examples with control variable constraints using essentially
the approach outlined in section 4 [5]. Dreyfus has solved a simple non-
linear state variable constrained problem with no terminal constraint
by another approach [7].



OPTIMAL CONTROL WITH INEQUALITY CONSTRAINTS 3z]:5

1.o

-.5

-1.o

X FROM Fig, 6b

/" X4

(sec.)

F. 8b. State vector components when the optimM control is applied
(constraint on x4).

The ditfieulty with writing general nonlinear programs is the problem of
taking the partial derivatives required by (52). These have to be
programmed separately for each given problem.

7. Conclusion and open problems. In the a,bove sections, we have aL-
tempted to develop in a systematic manner a general method for the compu-
tational solution of complex optim’-al control problems. The derivation used
is only one of the several possible ways in arriving t the solution. Others
are the originM variational approach used by Bryson nd Kelley when they
first developed the method, and the dynamic programming viewpoint, taken
by Dreyfus [6]. Our approach can also be interpreted in the light of the
recent work of Rosen and Zoutendijk [12, 18] on nonlinear programming.
However, here we take advantage of the properties of the dynamic system
and the nature of the constraint o make the generalized gradient projec-
tion (el. (23), (24), (30) and (31)) eomputationally much simpler. The
present approach emphasizes the role of the inequality constraints and the
discrete nature of the computational process, and regards the problem as
one of nonlinear programming. In fact, to the best of the authors’ knowl-
edge, the computational solutions of the optimal control problem provided
the first unifying interpretation to the three different disciplines, namely,
variational calculus, dynamic programming, and nonlinear programming.
For simple pedagogical reasons, the readers are urged to consult the above-
listed references.
At the present stage of development of this method, there is still con-
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siderable art associated with the a,pplication of this technique to complex
problems. While there is little doubt concerning the validity of the general
approach, ingenuity on the part of the user can still help the effectiveness
of the method greatly. For one thing, one good initial guess to the optimal
solution can speed the convergence very much.
A further question in this connection is h.ow close does this technique

allow one to approach the actual optimal solution? This is difficult
to answer, because in many eases we do not know even the form of the
actual optimal, solution, particularly with nonlinear problems. Also, in the
latter case, the method does not distinguish between a local and a global
minimum, or worse yet, between a local minimum and an inflection point
if no further assumptions are made on the nonlinear functions involved.

.The method of successive approximation described in this paper is an
infinite process. In practice, of course, we must terminate our computation
within a finite number of iterations. How close does the eoinputed solution
approach the true solution thus further depends on the criterion for termi-
nation of the computation process, control of round-off error, and other
numerical approximations. These are all subjects of numerical analysis and
require separate treatment. At present, relatively little is known along
these lines concerning this technique as applied to problems of optimal
control. What one can say mmerieally is that "Whatever you can do, I.
can do better or at least iust as good". This is often sutfieient for practical
purposes.

In the ease of linear dynamical systems, our experience suggests the follow-
ing qualitative answers: (1) Convergence to the exact optimal solution ap-
pears to be slow with the descent schemes of (22-25); (2) On the other hand,
most of the descent was realized in the first ten to fifty iterations. Then a
large number of iterations was used in obtaining fractions of percent of the
total improvement; (3) The number of control steps employed does not
seem to affect the rate of convergence in any significant way; and (4) The
rate of convergence is dependent on the controllability of the dynamic
system.
These remarks (1-4) are more or less what is to be expected in any

gradient method of computation. It is believed that they apply also to
nonlinear problems in the same qualitative fashion. However, it is also
expected that we can utilize many of the known techniques (such as anti-
zig-zag procedures) for the gradient computation and improve the con-
vergence rate in calculating optimal controls.

For the same reasons it is also difficult at this stage to evaluate the
various methods for obtaining an optimal control for nonlinear systems.
Numerically, of course one can always compare two methods by solving a
series of identical problems using both methods. This is probably what has
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to be done if the effectiveness of the various versions of the method are to
be compared.

Lastly, it should be pointed out that at the present stage of computer
technology the gradient method described herein can solve effectively
practical problems involving single in-flight constraints of the type (6) or
(7). The problem of multiple constraints discussed in section 4, especially
the case where there are more inequality constraints than control variables,
cannot as yet be solved rapidly on the computer. In other words, it is not
yet feasible to solve a general nonlinear program involving a very large
number of variables.
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A SOLUTION OF THE GODDARD PROBLEM*

BORIS GARFINKEL
Abstract. The problem of optimizing the thrust of a vertically ascending rocket

is solved here under the assumption of isothermal atmosphere in two important cases:
1) the jet Mach number and the fuel supply are sufficiently large; 2) the drg is a
convex function of the velocity.

The first case embraces all physical drags and is valid for the Earth; the second
extends to all atmospheres, but is restricted to drags that arc fairly common.

With impulsive boosts in velocity admitted, the solution is shown to contain a
finite number of such boosts in the sonic region of the rocket velocity, and to contain
no coasting arcs except in the terminal stage.
An absolute minimum is proved with the aid of a sucient condition applicable to

problems of optimum control.

1. Introduction. The problem of maximizing the summit altitude of a
vertically ascending rocket, of which the Goddard Problem (1_919) is a
variant, has received considerable attention in the literature. Despite the
notable advance achieved by Tsien and Evans (1951), numerous gaps in
the theory still remain to be filled. As has been pointed out by Leitman,
Ross, et al., the problem continues to be beset by the difficulty arising from
the requirement that the mass be monotone. Solutions that meet this re-
quirement have been obtained only in a few very special cases, typified by
the work of Miele (1.958), who treated flight in vacuum and the power law
of drag.

In the present paper, which is an outgrowth of the author’s unpublished
work of 1949, the class of soluble cases is considerably broadened. With the
assumption of isothermal a,tmosphcre and the admissibility of infinite
thrust, a solution is obtained in the following two cases: (1.) The jet Mach
number and the fuel supply are sufficiently large; and (2) The drag is a
convex function of the velocity. The first case is. valid for the Earth; the
second is restricted to a class oi’ drags that arc fairly comon. The remain-
ing case, where neither 1) nor 2) holds, is being left as a subject for future
investigation.
A recapitulation of the relevant existing theory, designed to provide the

necessary background for the current development, is incorporated in sec-
tions 2 and 5.

2. Formulation of the problem. The equation of motion of the rocket,
subject to forces of gravity, drag, and thrust, is

(1) ic + m? + c. (v, x)p (x)v’ + e (x) o,
Received by the editors December 18, 1962.
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where m is the mass, V the velocity of the rocket, C, the (t.l:g.-coeiiicient,
X the altitude, p the density of the air, S the cross-section, g the ccelera-
tion of gravity, c the jet velocity, and the superscript dot indicates the
differentiation with respect to the time.
We shall introduce the simplifying assumptions"

(i) C’ is fu.uctio. of V ouly,

(2) (ii) g const.,

(iii) p p0 exp (-X/.), cotst.,

defiu( the dimc.tsi()nless parmcters a, fl

g/c, fl

0<a< m, 0<fl<
whcre m0 is th.e initial mass, and dimetisionless varial)les x, v, , y, aud f by

x ffX/c, v V/c, log
(4)

The (1) t)ecomes

Xo x N x,

the prime itdicatit.g the diffcrcntiatiou with respect to x. The initial co-
ditiots are

((;) (, o, v (0) o, v (o) o;
the termi.al codil;ions tre ()t specified.
The q.uautitics m ad i. in (1) are boutded t)y the itie(lualitics

(7) m m ,, 0 -i’, < ,
if ifinite thrust is admitted as a mathematical co.veuielce. Such a thrust,
operating for an ifinitesimal time, produces a finite positive jump v,
while y and ( v) remain continuous in virtue of (5) and (4). In terms
of the new va’iables, (7) can be written

(8)
1 ,. y v x/ o,
y’+v’+ 1/ 0.

The two unknown, functions y (x), v (x) are connected by a differentia]

constraint 0; the system l:herefore has one degree of freedom, which
cal be realized physically by a choice of an. arbitrary v (x), ideally regulated
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by a servo-mechanism controlling the flow rate rh. Functions y (x), v (x)
will be admissible if y, v, y’ satisfy the constraints (5) and (8) with the
initial conditions (6), and if they are continuous except at corners, where
y’ and v may be discontinuous with Av => 0. In the class of admissible
functions we seek v (x) that minimizes -xl.
The problem is thus identified with the Problem of Mayer in the Calculus

of Variations, complicated by the presence of algebraic and differential
inequality constraints.

3. The auxiliary problem. The differentiM constraint 2 >= 0, assuring the
monotonicity of the mass, admits subarcs on which 2 0 while 1 > 0;
i.e., the "burning" regime may be interrupted by the insertion of "coasting"
subarcs. In order to avoid such complications let us consider an auxiliary
problem characterized by the absence of the constraint 2 =>- 0. While such
a formulation, used by Tsien et al., automatically eliminates the aforesaid
complication, it creates another one by admitting 2 < 0 and Av < 0. Of
course, negative fuel consumption is a physical absurdity! The resulting
solution would not be of physical interest, were it not for the curious fact
that such an occurrence is precluded in certain practical cases. Indeed, if
the constraints are satisfied anyway in the form 2 > 0, Av _>_ 0, it is clear
that the auxiliary and the actual problems have the same solutions. In
particular, that such is the situation in both eases treated here will be
shown in Theorems 1 and 2 of section 12. In terms of the quantities a and
v, the two eases can be respectively characterized by:

(i) a is sufficiently small; 0m is sufficiently large;

(ii) C)v is convex.

Accordingly, we shall attack the auxiliary problem, which is in the
standard form of the problem of optimurn control" We seek a function u (x)
satisfying

--y -Jr-g(x,y,u) 0,

xo-<= x <- x,

subject to the boundary conditions and the inequalities"

xo- a, y (xo) b,

(10) q) (Xl, y (Xl)) 0,

(x,y,u) >=0,

and minimizing some prescribed function
(11) G(Xl, y(xl)).
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tIere y, u, P, are vectors of n, m, p, r components respectively, with
p < n-+- 1. In our problem n m r 1, p 0;G -xl,u v,
atld

(12)
g (fe q- 1)/v 1/oe,--- (-0max y v x/a 1.

Since v’ has disappeared from the problem, v has assumed the role of a
"control" variable, which enters g(x, y, v) non-linearly. That the problem
is non-singular is shown in section 8; the solution is obtained in sections 5-14
by the application of the necessary conditions I-IV and the fundamental
suciency condition of Weierstrass. The first one is the multiplier rule, com-
prising the Euler, the convexity, the transversality, and the corner conditions,
treated respectively in sections 5, 13, 6, and 7.
The existence and the character of the solution intimately depend on the

nature of the drag coefficient C, (v), vhich is the subject of the next section.

4. Some properties of the drag. We shall assume the usual positiveness
and the continuity of C,(v), the monotonicity of the drag,

d (C.v) >0,(13) d
and the asymptotic expansions

C,, A0-t-Av/Av+ asv--0,

(14) (7, Bo- B1/v-- Be/v + asv--> ,
A >= O, Bi >= O, i O, 1_,

Then the logarithmic derivatives k and k’ dciined by

(15) / =--: d log C./d log v, it’ -- dlc/d log v

k

l_q(;. 1. Logarithmic derivatives k(v) and/c’(v)
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have the properties"

;(0) ;() ;’(0) ;’() 0,

(16) /(0+) > 0, tc(--) < 0,

/(o+) > o, ’(-) > o,
1+2 > 0.

Furthermore, let C. (v) hve single mximum t, say ao. Then lc has
maximum at al a zero at a0, and a minimum at az, while/c’ has zeros at
a and az. It follows, in view of (16), that

(a0 v)k > 0, (v al)(v az)/c’ > 0,
(:7)

0 < a: <: a0 < a <
In the analysis, the function f (v), defined in (4), and the derived func-

tions H (v), h (v), defined herewith, will be extremely useful:

f C(v)ve/ > o,
(1.8) tI =--- vf f,

h=H--,L= (’--)L--f,
with literal subscripts denoting the argument of differentiation.

In terms of l and lc, these functions and their derivatives can be exhib-
ited as follows"

fi,--- (f/v)(2 -[-v-k- It) > 0,

fi,,,- (five)[(2 +v + It)(1 +v +/) +v-[-

H f (1-l-v + lc),
tt vfi,,o

h =f[(1 a/v)(2 +v-i- tc) 1],

h (- ,)fvv.
Special properties of these functions, obtained with the aid of (16), are
t,ubulated below:

f(0) f,(0) H(0) H(0) h(0) 0,

f() f() fw() It() h() ,
-,-f (0) C, (0)// > 0,

(20)
h, (0) --afi, (0) < 0,

2f f.ov(O)v -]- asv--0,
2H fv,,(O )v -[- asv-0.
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5. The Euler equations. Since the Lagrangian function of the auxiliary
problem is F ), , the extremals must satisfy the equations

y’= g(x,y,u),

,’ + kg + 0,
(2)

=0, _>_0,

where k(x), (x) are Lagrange multipliers. The substitution from (12) into
the Euler equations (21.2) and (21.3) now yields, in view of (18.2),

k’ + kfeY/v tt O,
(22)

(/v2) (Hey 1) t 0,

leading to

(23) }, k(0) exp f0 [(H- vf)ey- 1] dx/v.
The use of the "switching function" t (x) permits simultaneous considera-

tion of subarcs lying in the region > 0, where u 0, and of subarcs
lying in the boundary 0, where t 0. Three regimes are distinguished,
designated by I, B, and C:

I, Impulsive thrust, Av 0,

B, Burning, > 0, t 0,

C, Coasting, 0, u 0.

An extremal is compounded of a B-subarc, with impulsive thrusts I oc-
curring at a finite number of poin.ts, and a C-subarc appearing in the
terminal stage only.
During the burning stage t 0, and the "optimality" condition (22.2)

yields

(24) eYH (v 1.

That a solution v (y) of (24) exists follows from (20), which gives the range
of H as (0, ); that this solution is unique will be shown in section 9,
with the aid of Condition II. Several conclusions can now be drawn. First,
(8.1) implies y < then from (24) and (18) there follows

(25) H > 0, v 0,

and therefore v > 0. Since the initial vlue v (0) 0 violates the requirement
(25), the burning stage must be preceded by an impulsive launching with
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a velocity v0 that satisfies (24) with the initial condition y (0) 0; i.e.,

(26) H(vo) 1.

The initial discontinuity is thus specified by v_ (0) 0, v+ (0) v0, and
A Av. Of historical interest is the value of the gravity-drag ratio mg/D,
which equals life in our symbols, a,nd is optimized by (24) into H/f, or

(27) mg/D 1 + v + It.

The solution of the Euler equations is obtained by the differentiation of
(24) with respect to x, yielding

(28) --Hy’= H,v’,
followed by the substitution from (24) into (5), which in view of (18) now
becomes

(29) ally’ h.

Then, from (28) and (29),

(30) v h/ally,

and, provided h 0, v (x) is obtained by the inversion of the quadrature

z/oz dH/h
(31)

x() x(vo),

where

(32) x(v) = dH/h

defines a "rocket functior" dependent only on the form of CD(v) and on
the value of the parameter a. The equation of the extremal subarc now
appears in the parametric form x x (v), y y (v), in consequence of (24)
and (31). The special case h 0 is solved in section 11.
During the coasting stage 0, g 0, and (5) becomes

(aa) vv + f(v) exp -v - ma + 1 0

with the initial conditions corresponding to the "burnout", i.e., the solution
of the equation 0 with y (v) and x (v) furnished by (24) and (31).
That the convexity conditioo 0 is satisfied on the C-subrc will be

proved in Theorem 3 of section 13.



356 BORIS GARFINKEL

6. The transversality condition. In the control problem of section 3 the
relation

(34) [(Gx+ .g) dx + (Gy ).dy]xl 0

must hold for all dx and dy satisfying the differentiated equation 0,
the dot placed between vectors indicating their inner product. In the
auxiliary problemn 1, G -xl, and p 0, so that dx and dy are
arbitrary, and (34) reduces to

-1
(35)

,=0

at x xl. Three conclusions can be drawn. First, since both and cannot
vanish simultaneously, (xl.) 0, so that 1 (Xl) 0. Second, noting that
[g(x)l= oo from (35), and recalling that y < oo, a > 0, f < oo, we
deduce from (12) that v (x) 0. Of course, both conclusions are physi-
cally obvious: Xl must be reached with zero velocity after coasting with
fuel consumed. The third conclusion,

(36) x (x 0) > 0

follows from. the observation that: 1) As v 0 the asymptotic value of g
is g 1/v > 0, in view of (12), (20), and (25), and that 2) lira (hg) 1
as x- x_, in view of (35). Now, sb.ce X (x) cannot change its sign in virtue
of (23), the ie(l-uali-ty (36) implies

(37) (x) > 0 for x0 =< x < x,

which requirement ca be satisfied by choosing

(3S)

For future use, we note the followig asymptotic values as - 0"

(39) g

which ca. now be obtained from (35), (22), and (20).
The existence and the continuity of the multipliers ), (x), (x), required

by the multiplier rule, re now assured between corners of a minimizing arc.

7. The comer condition. At a "free" corner, the relations

(4o) , (x.g) o, ,x o
must hold, with A denoting jump. Noting tha in our problem, with
n 1, (40) implies Ag Ay’ 0, and recalling that Ay 0 in virtue of
(5), we deduce from (24), (29), and (18) that

(41) AII= Ah-- Afv- 0
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on a B-subarc. The definition of H now implies

(42) f -L f, 0,

from which the transition values v_ and v+ can be determined.
Since f.,, (0) > 0 and fi,, (o) > 0, according to (20), it follows that f,

has an even number of zeros, I, i 1, 2, 2N. Two types of drag
function are of practical importance"

Type 1 N O,
(4.3)

f > 0,

for which. (42) has only the trivial solution Av 0, so that no corner occurs.

Type 2 N 1,
(44)

(v I) (v I,)fvv > O.

Then there exists a line tangent to the curve f (v) at two points Vl and v
(Fig. 2 and 3), which satisfy the Corner Condition (42), and the inequality

(45) Yt < !1 < I,. < v.

The transition values at the corner are then determined as follows:

v_ v, v+ v if v’ > 0
(4)

v_ v2, v+ v if v2’ < 0

It will be shown in section 9 that such a jump in velocity is required by the
Weierstrass Condition II whenever the corner condition is stisfied.

f (v)

0 v I I2 v2 v

[F.G. 2. l)ouble tngent nd points of inflecti()n
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The results of the last paragraph can be easily generalized for any N,
with (44) replaced by

2N

s.  II > o,

here being a velocity jump for each one of the N double tangents.
Ag the junction of the B and C-subares the corner co,digior is sa6isfied

wigh

(48) Av Ay Ay’= AX A 0, Av’ < 0.

8. The Hilbert condition. With n n r 1, the four unknown
functions y(z), X(x), u(x), (z) are related by the four equations (21).
The highest derivatives being (y’, X’, u, ), the non-vanishing of the
Jaeobian determinant is the Hilbert Condition

F
(.49) # o,

or

(50) IF.ul 0 if > 0.

Here F is the Lagrangian function, and Fu is generally an m X m matrix.
The condition assures the existence of the highest derivatives listed above,
as well as their pieeewise continuity of class Ck- if g and are of class Ck,
and is a direct consequence of the Legendre Condition III’.

In our problem (50) becomes

(51) vH
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and, since X, v, and H are positive by (25) and (37),

(52) f 0.

Provided this requirement is met on the B-subarc, the Hilbert Condition is
satisfied, and since g is analytic in our problem, the functions (y, X, v, g)
are analytic between corners. It is noteworthy that the use of the velocity
v as a control variable, in place of the thrust v0, removes the apparent
singularity of the original problem.

9. Conditions of Legendre and Weierstrass. The necessary conditions
III and II, modified by the inclusion of the control variable u among the
set of slope functions, can be written for the one dimensional case, n m

1, as

[Xgu (x, y, u) -Jr- tg’,,]u >= O,
(3)

E - X[g(x,y,) g(x,y,u)] _-> 0,

for all (x, y, u, X, ) belonging to the minimizing extremal, and for all
u and satisfying O. In our problem (53), with the aid of (12)

and (24), reduces to
Xf > 0
vH

(5)
[]--f-- (O--v)fi,]>=O,

where f - f (0), and finally, since v, H, and are positive, to the require-
ments that

f, =>- 0,
(55)

]-- f >= (f v)f,,

hold on every B-subarc.
In the language of geometry, (55) implies that v must be restricted to

the domain where the tangent to the curve f(v) lies entirely below the
curve. For drag of type 1, (55) is automatically satisfied; for drag of type 2,
where (44) and (45) hold, (55) is equivalent to the requirement

(56) (v v) (v v) _>_ 0,

where Yl and v2 are the points of contact of the double tangent. The exclu-
sion of the interval (vi, v2) from the B-subarc then demands that a corner
occur when v reaches the values Vl or v2, as described in (46). Conversely,
the occurrence of such a corner satisfies the requirement E _-> 0, the equality
holding only at corners for v vl, v2, and conversely. Consequently,
f E dx > 0 on the B-subarc, to which we shall refer as Condition II*.
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That this condition is also satisfied on the C-subarc will be proved in
Theorem 3 of section 13.

Afortiori, the strengthened Legendre-Clebsch Condition III’; i.e.,

(57) d > 0

also holds, from which two consequences follow. First, (57) establishes the
Hilbert Condition (52); second, with the aid of (19.4) it implies that
Hv > 0. We conclude that H (v) is monotonic in the domain defined by
(56), and has an inverse H-1, thus assuring the uniqueness of the solution
v (y) of the equation (24). In view of this fact, it is convenient to replace
H and h in all the equations referring to the B-subarc by H* and h* (see
Fig. 3) defined by

H*------ H, h*------- h if (v-- vl)(v--v2) => 0,
(s)

tt* =- H(v,), h* ==- h(vl) if (v-- v.)(v-- v2) <= 0.

In the future, if no confusion results, the asterisks of H and h will be
dropped.

10. The Jacobi condition. The second variation in the control problem
defined by (9)-(11) with n m r 1, p 0 can bc written

d2J [(F. y’Fy) dx -t- 2Fu dy dx -t- d
(5)

zr- I" y2 -t- 2F, iyv + F,, v2) dx,

where F is defined by F 3,4, nt- tg’, 4) --y + g(x, y, v), g 0, >_- 0.
The necessary Jacobi Condition is that

(60) dJ 0

must hold on a minimizing extremal for all dx, dy, and for all 5y, iv satisfy-
ing the differentiated equations 0, g 0.

Observe that F -X’ from (21.2), and that our problem possesses the
following special features: 1) G -x, so that d2G 0; 2) F
in view of (12); 3) u v, and Fv Xg, since is linear in v; 4) At x

0 the relation d, -f- ’ dx 0 holds. Since ’ - < 0 from
section 12, the burnout point ( A- d of a "weak" comparison curve
lies in an arbitrarily small neighborhood of . Clearly,
and g 0 except on the interval (, -4- d), whose contribution to (59)
can be neglected. With this exception, iy and iv must satisfy

--y’ nt- g,fiy + g,v O,
(61)

0YWitv) 0.
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Furthermore, on the B-subare, x0 -< x =< , where is the "burnout" point,
observe that t* 0, gv 0 by (21.3), and the initial condition y (0) 0
implies y(0) 0, and hence the solution of (61) is y 0, 5v arbitrary.
On the other hand, on the C-subarc, x < xl, -# 0, and the con-
tinuity of ty in (61) implies y ( q- 0) ty ( 0) 0. Hence the solu-
tion of (61) is y v 0. Now, since ty 0 everywhere, dy y’ dx, and
(59) becomes

(62) d2J ------ X’g dx + Xg,, v.
O Xl

Finally, t x x (39) yields -l/v nd k’g -1Iv s v - 0; on
the B-subrc kg, > 0 by (53.1) nd (57). Since a nd v re positive, we
conclude that the Jcobi Condition is stisfied in its strengthened form
IV’, dJ > O.
An immediate consequence is that in our problem, with n 1, IV’

ssures the existence of field. Let fmily of extremls y (x, 0) be defined
by (9)-(11) with the initial condition (10.1) replaced by

(63) x0 a, y(x0) b + 0,

where 0 is a family parameter. That the region bounded by x a,
q, (x, y) 0 is, indeed, a field follows from the following considerations: 1)
The extension of IV’ to 0 0 is trivial; 2) IV’ assures the simple covering
of the region; i.e., the existence of the function 0 (x, y), and hence of the
slope functions u(x, y) and multipliers }, (x, y), t* (x, y); 3) in a one-di-
mensional problem, the Euler equations suffice to assure that the Hilbert
integral is independent of the path.
The conclusion of the last paragraph is not affected by the special circum-

stance p 0 of our problem. In the absence of a prescribed terminal
boundary 0, a natural boundary of the field is furnished by the re-
lation y -+- x/o o.,, which follows from v (x) 0 and (x.) 0.

11. The steady states of motion. Aside from their intrinsic interest, the
lemmas of this section are required in the proof of the basic theorems of
section 12.
LEMMA 1. The function h* (v) has one and only one positive zero,
Proof. The proof proceeds from (18), (19), (20), (57), (58). Two cases

re distinguished"
Case 1. a is outside (Vl, v2) (See Fig. 3.) Then the relations

h (v-- o)f--f,h (v-- o)fv,fi, > 0implythath*hasoneand
only one stationary point,

(64) minh* h(c) -f(a) < O.
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Since the minimum is negative, the relations h* (0) 0, h*(
and the continuity of h* imply the conclusion of the lemma, with

(65)
(v ,) h* > 0.

Case 2. a is inside (vl, v,). Then h*, stationary on the interval (vl, v),
attains there a minimum, min h* h (vl). That the minimum is again
negative is implied by h (0) 0, h (a) < 0, and 0 < Vl < a; finally, h (v)

h(v2) < 0 and h* () imply the conclusion of the lemma,
with

(66)
(v ,) h* > 0.

LEMMA 2. On the burning subarc of an extremal, the acceleration of the
rocket cannot change its sign.

Proof. The proof proceeds from (30) and (19), leading to

(67)
v

all, h 1 H

h h0 exp f0 dx.

Noting that a > 0, and that H > 0 by (19), (25), and (57), we conclude
that

(68) sgn v sgn h* sgn h0*.
THE COROLLARY, h0 0 implies

ately. Three types of trajectory are

a) vo <,r, h(z) <
b) v0 > ,, h(z) >

h (x) 0 and v ,, follows immedi-
thus distinguished"

0, v < 0 deceleration

0, v’ > 0 acceleration

c) v0 =,, h(x) 0, v -, steady state.

In case c) the solution (24) and
replaced by y 0, v ,. (31), of the Euler equations, must be

12. The basic theorems. Having constructed the solution of the Auxiliary
Problem, we shall show that under the assumptions of Theorems 1 or 2 it
satisfies the constraints 62 > 0 and Av _>_.. 0 on the B-subarc.
THEOREM 1. 2a < min (a, v) implies" 1) a < , < 2a, 2) > 0,

3) Av >= O, with the last two relations holding on the B-subarc of an extremal
of the Auxiliary Problem.
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Proof. To prove 1), observe that from (18.3)

h(a) -f(a),
(69)

h(2a) f(2a)[a + /c(2a)],

and that the hypothesis and (17) imply

0 < 2a < al < a0,
(70)

z(2) > 0.

Then (69) and f > 0 imply h () < 0 and h (2a) < 0. Furthermore, from
the hypothesis, a < 2a < vl < v2, so that h h* on (a, 2a), in view of
(58). The conclusion is now implied by the continuity of h* and by Lemma
1.
To prove 2), observe that 2, defined by (8.1) as

v’ 1(71) 2- o y -t- +-,

can be exhibited as a function of v, with the aid of (29), (30), (18), (19),
in two alternate forms"

(72) 2(v) h fv H (fv)I2+] + (v+/c’) 3all,, H oeH,,
q-

(1 +v-t-k)

The positiveness of v, f, H, f,, Hv 2 -k k, 1 zr- v q-- 1 is assured by (16),
(18), (19), (20), and (57). There are two possibilities" Either h > 0 or
h < 0. If h >= 0, then . > 0 in the first line of (72). On the other hand,
if h < 0, then v < y in (65); the previous conclusion, , < 2a, and the
hypothesis, 2a < a, imply v < a, then (17) implies/c’ > 0, and finally
b2 > 0 in the last line of (72).
To prove 3), recall that v > 2a > y, and that by Lemma 2, v > ,

implies h > 0, v’ > 0, and conversely. Then note, with the aid of (41),
that h (Vl) h (v) > 0. Therefore v’ > 0 if v v or v v2, thus excluding
the possibility Av < 0 in the second line of (46).

For rough practical purposes, the hypothesis of the theorem may be
replaced by

(73) M > 4,

where M is the jet Mach number, and is the ratio of the atmospheric
specific heats. To derive this result observe that" 1) a - gg,/c 1/,M
by the law of perfect gas and the formula for the sonic velocity, 2) the
constants a and Vl, which are the values of v at the maximum of /c (v)
and at the first point of con.tact of the double tangent to f (v), respectively,
lie in the sonic region, 3) the sonic velocity corresponds to ao 1/M,
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and both a and v are generally sufficiently near a0 to iustify the inequalities
a/ao > 1./2, v/ao > 1/2. Thus, (73) implies 2a < a and 2a < v.
For the Earth, with c 2000 m/s, g 9.8 m/s, 8000 m, 1.4,

we calculate

a 0.02, M 6,
(7)

M 8.4,

concluding that the hypothesis of the theorem is satisfied for terrestrial
rockets.
The vacuum case, p 0, solved by Miele, corresponds to a 0 and is,

therefore, a subcase of the theorem. On the other hand, the constant-
density atmosphere, p const., corresponds to a and hence lies
outside the scope of Theorem 1. Indeed, Leitman succeeded in solving this
case only by invoking the quadratic law of drag, C. const., bringing the
problem within the scope of Theorem 2.
THEOREM 2. If CoY i8 convex, then > 0 and Av >= 0 on the B-subarc

o.f an extremal of the Auxiliary Problem.
In the proof, note that the hypothesis, in view of (15), implies

(75) (/ + )( + 2) +/’ > 0,

and, consequently, > 0 in the last line of (72). Furthermore, observe
that (75), (16.4), and (19.2) imply the convexity of f(v). Hence the drag
belongs to type 1 of section 7, with no corners on the B-subarc, and with
Av=O.
The cases of quadratic law of drag and, the more general, power law of

drag, also treated by Miele, appear as subcases of the theorem.

13. The coasting arc. The Weierstrass Condition E _-> 0 and the Convex-
ity Condition t = 0 will be established on the coasting arc under the
assumption that 0 is suitably restricted. The proof in Theorem 3 in-
volves two definitions and a lemma.

For drag of type 2, define a constant V: (see Fig. 3) by

(76) H(V.) H(I), V # I,

and a function u(y) as the least root of (24),

(77) H(u)ev 1.

Note that, in view of Theorem 1,

(78) V > v > I > v > 2a > %

and that u is confined to the domain

(79) u < I, u >= V,
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where

(80) H > 0, H > 0.

Furthermore, observe that the function g(y, v) is minimized with respect
to v at v u, since

(81) g(y, u) O, g(y, u) > O,

and that it has no other stationary points for v < u. An immediate conse-
quence is that

(82) gv(y,v) < 0 if v < u.

Hereafter we shall use the notation u(y(x)) u(x).
The function u is not to be confused with the optimum velocity on the

B-subarc, defined by

(sa) H*(),, .,
and confined to the domain of (56). Note that v(x) >= u(x) on the B-subarc,
the inequMity holding only for v < v < V.
LEMM 3" "If [V() Vx][V(.) V] >= 0, then v() <-_ u() and v(x) (u(x)

on (, x)."
Proof: If belongs to a B-subarc, then the hypothesis and the preceding

paragraph imply v() u(). The special case v() < u($) arises when the
B-subarc is absent because of insufficient fuel supply, with

(84) < H(1), 0,

so that v+(0) co < v0.

If v u at some point x, of [, x], then the element (x, y, u v) at x,

belongs to a fictitious burning rocket. Therefore, the values y’, v’, u’ at x,

satisfy the relations

(s,)
y’+ u’ + !_

The result follows from (71) with 2 --- 0 on the C-subarc, arid with v, v’
replaced by u, u’ for the fictitious burning rocket. Although u is not the
optimum velocity, (71) and (72) remain formMly valid, and the conclusion

> 0, of Theorems 1 arid 2, holds in view of (80). Therefore, u’ v’ > 0
whenever u v 0. Since u v >= 0 at x , it follows that u > v on

(, x).
THEOREM 3" "If [v($) v][v(//) V:] 0, then E ->- 0 and <__ 0 on

(, x)."
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Proof: Let a bar over a letter refer to a comparison curve. Observe that
for a given (x, y),

>x, s < v(x) on (, ),(86) , v(x) on (, x),

with the aid of (4). From (87) and Lemma 3, 0 __< v(x) < u(x), so that, by
(83), gv < 0 for all values of v between v and v(x). The Mean Value Theorem
now leads to g(0) >= g(v); (53) and X > 0 complete the proof that E => 0.
To show that =< 0, note that Xgv 0.
The physical interpretation of the Theorem is the requirement that the

fuel supply be sufficient to preclude a burnout with v(() in the interval
(vl, V.). In order to relate this requirement to oa m, note that

(v) v log H + x(v) x(Vo),(87) (()) ,
in view of (4), (24), (31). The hypothesis of Theorem 3 is then equivalent to

(88) [(2 max- Oa(Yl)][COmax oo(V2)] O.

Clearly, it is sufficient but not necessary that the fuel supply be so large
that

(89) Om >= w(V2).
The results can be extended to a drag with any N > 0, as was done in
(47). Of course, if N 0, as in Theorem 2, Vl and V2 do not exist. Then
the conclusions of Lemma 3 and Theorem 3 are automatic.

14. The sufficiency condition. We resort to the following variant of the
fundamental suciency condition of Weierstrass, proved in the Appendix"

Let a family y (x, O) of extremals of a control problem be generated by the
initial conditions (63), involving 0 as a parameter. If this family constitutes
a field, and if each extremal of the field satisfies I and II* with the appropriate
initial conditions, then the extremal for 0 yields an absolute minimum of
the control problem.
Note that Conditions I and II* have been established in sections 5-13

for 0 0, and that their extension to the family defined by (63) is trivial.
Furthermore, the existence of a field has been proved in section 10. We
conclude that the hypothesis of the theorem is satisfied, and that our ex-
tremal therefore yields an absolute minimum of the auxiliary problem.

15. Summary. Under the assumptions of Theorems 1 and 3 or of Theorem
2, a typical solution is characterized by the structural formula

(90) (IB)r+C
i.e., the burning stage B, preceded by an impulsive launching I, contains
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N additional impulsive thrusts, N being the number of double tangents of
the curve f(v), and is followed by the coasting stage without fuel. The
solution therefore includes as a special case the results of Tsien and Evans,
where N 0. An absolute minimum has been established with the aid of
the second variation and a variant of the suiciency principle that is par-
ticularly useful in problems of optimum control.
Theorem 1 applies to terrestrial launching and any drag function with

some very general properties listed in section 4; Theorem 2 covers extra-
terrestrial launching but is restricted to a fairly common class of drags
that includes all the cases previously treated in the literature.

APPENDIX
To prove the Sufficiency Condition stated in section 14, define w(x, y)

by

w G(x, y) + I*,
(91)

I* ----- J {[X.g(x, y, u) -q- ] dx X.dy},

where I* is the Hilbert integral of the control problem and u, X, t belong
to the field. With A denoting an increment, observe that" 1) Aw 0 on
a closed path; 2) Aw 0 on a boundary subarc in 0, in virtue of the
transversality condition (34) and t 0; 3) Aw AG on an extremal of
the field in view of y’ g (x, y u), where u (x, y) is the "slope function".
Next let 0 and 1 denote the end-points of the extremal for 0 0, and

let C0. be any admissible arc connecting 0 and a terminal point 2 lying in
0. Then there follows from the properties of w listed above that

Wo G(1) a(0),

101 0,
(92)

Wo (2) (o) + ].* (Co),

W0

leading to

(93) G (1) G (2) I* (C02).

Finally, note that, in view of (53) and gk 0, the expression for I* in
(91) can be also exhibited as

d d

9 g(x, y, ); ’5 - u,
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nd that II* implies I* < 0 in (94) nd (93). The conclusion

(95) G(1) < G(2)

follows immediately.
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A REMARK ON "A NEW PARTIAL DIFFERENTIAL EQUATION
FOR THE STABILITY ANALYSIS OF TIME INVARIANT

CONTROL SYSTEMS"*

G. P. SZEG0; ND G. R. GEISS

1. Introduction. In [1] Szeg6 presented a genemliztio of the Zubov
method for solving the stability problem associated with autonomous con-
trol systems. This note discusses some extensions of [1], examines its lust
example in detail and presents a correction, due to the second author, to
equation (57). Some interesting structural aspects of the stability investi-
gution are further emphasized und illustrated by examples.

2. Some extensions. In [1.] Szeg5 was mainly concerned with the stability
properties of the equilibrium point x 0 of the dynamical system [2]

() f(x), f(o) o.
Two methods were developed for the stability investigation of such a
system. The first method is based upon the integration of the partial
differential equation (1.8 of [1])

(x)(2) (grad vl(x), j’(x)}
1()1)

where the function (x) is supposed to be definite along the trajectories
of the system (1) and 1(vl) to be such that the Liapunov function al (x)
converges, i.e.,

vl (x)

*(3) *(x) (s) d < , .*(0) 0, (x).

The second method is based upon the integration of the partial differ-
ential equation (23 in [1]):

(4) (grad v:(x), f(x)} 0(v.),

where O(v) is such that:

v2 (z)

*(x) fo () ds < * * ((x) ),(5) (o) o,
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: Instituto di Meccanic Applicat del Politecnico, Milano. Visitor at the Research

Institute of Advanced Studies (RIAS), Baltimore, Maryland.
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where

(6) 2(v2) (v2)
and t (v) is any semidefinite scalar function.

S(v)

In the case of equation (4) there may arise what is called a "degen-
erate case", i.e., the case in which the scalar function a. (x) itself is semi-
definite. Since the scalar function a. (x) has continuous first partial deriva-
tives it follows that on the manifold M on which a (x) vanishes (x)
also vanishes. Thus M is an integral manifold of (1). In the case of the
scalar functions * (x), derived from the integration of the partial differ-
ential equation (2), the same situation may arise only if the condition
that (x) has to be definite along the trajectories of (1) is relaxed and
k(x) is allowed, to be semidefinite. Under these relaxed conditions equation
(2) contains as a particular case equation (4) and both the partial differ-
ential equations suggested by Zubov ([2] Theorem 19 and [3] Theorem 52).
In this case, if the resulting Liapunov function vanishes on M, the sta-
bility properties of M will be defined by the following:
THnonn. Consider the dynamical system (1). Let
i) v (x) be a continuous scalar function with continuous first partial deriva-

tives in the whole space E.
ii) O(v) be a continuous scalar function.
iii) M be the manifold on which v(x) O.

Assume that:
iv) O(v(x) =-- 0 in all points oj" M, O(v(x) 0 for x M.
v) The partial differential equation

(7) (grad v(x), f(x)} --O(v)

is satisfied in the whole space E.
vi)

(s) (x)O((x) >= o
in the whole space E’.

vii) The trivial solution v 0 of the equation

(9) -o()

is globally asymptotically stable.
viii)

I) a(p(x, M) <=
(10)

II) a(p(x, M) <__ v(x)l -<_ b(p(x, M)

where p(x, M) is the euclidean distance of the point x from the set M, a(r)
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and b(r) are positive definite scalar functions, and a(r) is such that
limr_, a(r) then if viii I) is satisfied limt p(x(t), M) 0 for all
initial conditions, and if viii II) is satisfied M is globally asymptotically
stable.

Proof: The assumptions i)-vi) imply that the manifold M is stable in
the v-norm, vii) implies that M is globally asymptotically stable in the
v-norm, viii) translates the v-norm properties into euclidean norm prop-
erties.

This theorem can be easily extended to include Theorem 2 of [5] and all
instability cases.

In the particular case in which M is a minimal set containing the equi-
librium point x 0, asymptotic stability of M implies asymptotic sta-
bility of x 0.

It is interesting to examine what orm M can have and what conse-
quences its form will have on the outcome of the stability analysis. We
shall discuss the case n 2 first. If in this case M is a closed, bounded
curve and does not contain the point x 0 it corresponds to a periodic
motion. If it contains equilibrium points it may be a "path polygon" [6]
or all its points may be equilibrium points. If M is unbounded, then either
all its points are equilibrium points or M corresponds to a singular solution
of (1).
The same conclusions as in the case n 2 may be reached, for the case

n 3, M 1. If M 9 and if M is compact, then by a theorem due
to Schwartz [7] we know that the only minimal sets on it will be equi-
librium points, closed orbits or the whole M which in this case must be
torus T 2. If M is not compact no immediate conclusions on its struc-
ture can be reached.
The stability problem of (1) will in any case be reduced upon the identifi-

ction of M to problem of dimension t most n 1, the dimension of M.
In the following example (example 3 of [1]) we shall illustrate the case

n 2, M noncompact.

3. Example 1. The system with which we re concerned is

a) 2= y--x
(11)

b) -- x 1/2y.

It is shown in [1] that the function

(12) v 2x- y
satisfies the relation

(13) --2v
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and thus the solution

(14) 2x- y 0

is globally asymptotically stable. This result is interesting for a number of
reasons.
The solution (14) is a singular solution, i.e., write (11) as

(15) dx_ 2y3- 2x
dy 2x- y

and then let

(16) u x/y

to obtain

du 2 4u(17) d- 2uy- 1"

duNow, observe that 0 when u 1/2, i.e., when

(14) 2x y4____ 0.

The equilibrium points of system (11) are contained in the solution
curve (14). In. particular, the system (11) has equilibrium points at

x=0+/-
4

(18)
y=0+/-

2

and they lie on the branch of (14) given by

(19) %/x y lyl.

The linear approximations to (11), in the neighborhood of the equi-
librium points, are"

2= --x , x=O
(20)

.i] 1/2y + xfnear

= x: +5 u= x= +/-/
4

(21 near

= x:V --. y:V Y-- +/-
2
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F(. 1. Phase Portrait of System (11)

Thus, the origin is a stable node (the eigenvalues are -1/2, -1) and the
other equilibrium points are saddle points (the eigenvalues are -1/2, --2).
Now, consider the Liapunov function,

(22) V 1/2(x + y)

whose derivative along trajectories of (11) is

(23) -x -1/2(x-y) +xy.
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It can easily be shown that V > 0 and < 0 in the region

(24) 2 V =-(x -y) < 0.295;

therefore, all solutions beginning in t tend toward the origin as -- .(See LaSalle and Lefschetz [8].)
Finally, one obtains the phase portrait shown in Fig. 1. One may ex-

press the solution curves in terms of elliptic functions of the first kind, i.e.,
by inverting (17) obtain

dy(5) d-- +
and then

(26)

2u 1
4u2- ’2

y
4u2- 2

y (4u2- f (4u 2) du,

from which the elliptic function expression is obtained [9]. The time, T,
taken to move from one point to another on a given nonsingular trajectory
is obtained by integrating (13), viz.,

(27) T 1 F2x2(! y4(O) 1In
L2x(7) --_]"

The parametric form of the singular solution (14) is obtained as follows"
Solve (14) for x, i.e.,

1

and substitute this in (llb) to obtain

(29)

which may be integrated to yield

Y (%,/ + cel/2 t)-l.

Finally, substitution of the proper value for c and use of (28) result in

a) y(t) [sgnx(O)]w/(1--e/t)+(30)

%/ [sgnz(O)l%/5(1 e/ +
The expression (aOb) does hOg agree wigh (7) of [1.]; however, (57) is
obviously in error since i does nog allow he equilibrium solugions (18).
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It is also interesting to note that if (11b) is rewritten as

z ) + 1/2y

and then substituted into 1 la) one obtains the unforced Duffing equation,
viz.,

(31) ?)+ + 1/2y_ y3_ 0.

Thus, in correspondence with the previous development, (31) has the
singular phase solution (29). In fact, one can show that systems of the
form

(32)
y3 x

9 x-- fly,

1
(35) $ --y =t= y

if a/ 2.
In the following example we shall illustrate the case n 3, M non-

compact and containing a periodic orbit.

4. Example 2. Consider the system

1 X2

(36) 22-- x3

23 --Xl X2 X3 + {!(] Xl 2XlX2)X2 + .(1 X12)X3 { > 0

and the scalar function

(37) v --Xl -- X2 eXl2X2 X3,

whose total time derivative with respect to the system (36) is

(38) i xl x2 + x2x2 + x3 v.

We conclude that the manifold M on which the scalar function (37)
vanishes

or equivalently,

(33) ) + (a -t- )) -t- y y3 0

have the respective singular solutions"

1
x +/-
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(39) M: x x

is asymptotically stable.
By substituting (39) into (36) the third equation becomes an identity

and we obtain the familiar Van der Pol equation

1 X2
(40)

2 --X eX2 eXX2.

We conclude that the equilibrium point x 0 of equation (36) (which
is its only equilibrium point) is unstable and that the equation. (36) has
one asymptotically stable orbit which lies on the surface (39) and is
defined by the equation (40).
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